Vol 10, No 4 (2019)
PALEOGEODYNAMICS
829-839 1171
Abstract
We present new geochronological data on dolerites from the Chaya dyke swarm of the Baikal inlier of the Siberian craton. The U‐Pb dating of baddeleyite from one dyke located at the SW end of the Chaya dyke swarm yielded an age of 1752±6 Ma, similar to the previously obtained age of a dyke in the NE end of this swarm. These ages estab‐ lish an age of 1752 Ma for a unified Chaya dyke swarm that extends for more than 200 km in the Baikal inlier of the Siberian craton. These new data confirm that the entire Chaya dyke swarm (as well as the Timpton‐Algamay and Eastern Anabar swarms) is a part of an overall radiating dyke swarm belonging to the Late Paleoproterozoic Timpton Large Igneous Province (LIP), the center of which is located in the middle section of the Vilyuy river flow. Thus, the LIP is enlarged to include the area further west in the Siberian craton.
841-861 1012
Abstract
Eastern part of the Central Taimyr belt is composed of Precambrian rocks penetrated by granites of the Snezhnaya complex (845–825 million years) and later overlain by mid‐Neoproterozoic sin‐ postorogenic sedimentary deposits of the Stanovaya‐Kolosova Group. Two competing concepts on the Precambrian history of the belt are dis‐ cussed. The first suggests that by the middle of the Neoproterozoic amalgamation of various terrains formed the Cen‐ tral Taimyr microcontinent, which afterwards collided with Siberia in Vendian. 2) According to the second point of view, which is shared by the authors of this article, the belt was part of the Siberian craton from at least the Mesopro‐ terozoic, and there is no suture that would separate it from the South Taimyr belt. To our surprise, during the field work in the South‐Eastern part of the Central Taimyr belt near the proposed “Vendian sutura”, assumed by the first concept, we found a granite pluton (Pregradnaya massif) intruding clastic rocks of Stanovaya‐Kolosova Group. Such setting is quite uncommon for the belt and contradicted to publications, describing the mentioned clastic rocks to overlay the granites and contain their debris. Dating of the pluton confirmed the field observations – its SRIMP zircon age has proved to be 609±2 Ma, an unusually young for this region. The pluton is located in a wide deformation zone separating the Precambrian rocks (to the northwest) and the Paleozoic deposits (to the southeast). Two minor bodies of similar porphyritic granite were found in the same zone further to the southwest, and it seemed logical to assume that a chain of Vendian granites marks boundary deformation zone. However, their dating (843±6 и 840±5 Ma) showed that they belong to Snezhnaya complex. In this paper, we discuss two Neoproterozoic magmatic ‘flare‐ups’ in the Central Taimyr Belt, which are dated at 845–825 and 640–610 Ma. Both ‘flare‐ups’ are evidenced by K‐rich per‐ aluminous granite batholiths intruded the upper crust. It is most probable that each flare‐up was related to a collision event completing an independent cycle in the evolution of the active margin of the Siberian paleocontinent.
863-878 656
Abstract
The Main Uralian fault (MUF) zone is a suture at the junction of the Urals and the East European platform (EEP). Its complex tectonic melange is still poorly studied. We obtained new data on compositions and ages of the Krutorechensky granites (KG) composing an intensely tectonized and boudinaged elongated body discovered in meta‐ terrigenous and meta‐volcanogenic rocks in the western part of the MUF zone. In chemical composition, these gra‐ nites are similar to the Vendian‐Cambrian collisional granitoids of the Isherim and Lyapin blocks. The LA‐ICP‐MS method was used to determine U‐Pb zircon ages for the KG samples. The zircons contain ancient xenogenic cores (1221–1034 Ma) and young rims (400±6 Ma). The Middle Riphean ages of zircons from the protolith suggest that the KG block (belonging to the Prisalatim zone and located west of the MUF zone) is a fragment of the EEP, because the complexes of the Ordovician‐Devonian Tagil paleo‐island arc (located further eastward) are mostly dated to the Ven‐ dian. The KG crystallization age (537±2 Ma) is practically the first (Vendian) early Cambrian dating for the granites sampled in the MUF zone. Considering this age and the petrogeochemical features, there are grounds to suggest that the Krutorechensky granites originated due to tectonic‐magmatic events (with possible pluming) that took place at the final stage of the Timan collision, similar to granites of the western slope of the Northern Urals (Moiva, Posmak and Velsov massifs). Subsequently, these granites were involved in the Paleozoic accretion‐collision processes that created the modern MUF zone (i.e. tectonic melange). Our study results are important for clarifying the structure of the Urals‐EEP junction zone and useful for geological mapping and metallogenic assessment of the region.
TECTONOPHYSICS
K. Zh. Seminsky,
I. V. Buddo,
A. A. Bobrov,
N. V. Misyurkeeva,
Yu. P. Burzunova,
A. S. Smirnov,
I. A. Shelokhov
879-897 1130
Abstract
The article presents the results of studying the internal structures of platform fault zones with the use of a new tectonophysical approach to processing and interpretation of electrical exploration data obtained by the transient elec‐ tromagnetic method in the near field zone (TEM). In the study of the central part of the Kovykta gas condensate field (East Siberia, Russia), we applied the ideas of tectonophysics envisaging three stages of fault formation, which determine the three‐membered transverse zoning of a fully formed fault zone. Each subzone is characterized by a certain level of rock disturbance and corresponding electrical conductivity. Based on the analysis of electrical conductivity values, the boundaries can be determined between locations differing by the degrees of rock disturbance of the sedimentary stra‐ tum. Using a map of this parameter, it becomes possible to generally establish the boundaries of fault zones and specify internal subzones. The new approach was applied to assess the electrical conductivity of the reservoirs of the Kovykta field. It is established that there are several zones of faulting in the sedimentary stratum, which have not reached a final stage of development when a single fault plane is formed. Currently, these are zones of increased fracturing and dense occurrence of second‐order ruptures that are typical of platform settings due to their relatively weak tectonic activity. The zones are structurally non‐uniform, as evidenced by rheological layering of the sedimentary cover in the vertical cross‐section. A 3D electrical conductivity model of the largest fault zone in the study area shows alternating segments with more or less developed internal structures. Such segments are confined to layers that differ with respect to frac‐ turing. Exploration and development of hydrocarbon deposits can benefit from 3D modeling of large fault zones with the use of the tectonophysical approach for processing and interpretation of the TEM data. The models can provide addition‐ al arguments for improved decision making about locations for trouble‐free well drilling, as well as for selecting more effective methods for drilling sedimentary strata composed of complex horizontal layers.
899-920 915
Abstract
The Nyurbinskaya and Botuobinskaya kimberlitic pipes were in the focus of a comprehensive study aimed to investigate their structural and material positions as the main deposits in the Nakyn field (Yakutian Diamondife‐ rous Province, Russia). This paper present the study results and 3D structural‐material models showing the formation of these deposits. In application to geological studies, the 3D modeling technologies allow taking into account the ani‐ sotropy of material complexes comprising kimberlite pipes, as well as inconsistencies in the structural and morpho‐ logical properties of ore‐bearing structures. In order to discover the structural positions and features of the fault‐ block structures of the deposits, tectonophysical methods were used in combination with tacheometric surveys. Based on this more comprehensive and integrated approach, the existing fault patterns were clarified in detail; elements of the internal fault structure were mapped; fault azimuths and dip angles were estimated; and thickness values were obtained. Computer processed data were used to construct 3D models showing the fault‐block structures of the Nyurbinskaya and Botuobinskaya pipes. The mineralogical, petrographic and diamond‐bearing features of various kimberlite generations comprising these pipes were investigated in order to reconstruct the morphology and spatial positions of each of the selected complexes in the current cross‐section and in accordance with intrusion phases. The 3D frame models of geological bodies were constructed for all the magmatic phases, including porphyry kimberlite and eruptive and autolithic kimberlite breccia. The structural‐material models for the Nyurbinskaya and Botuobin‐ skaya pipes were based on a synthesis of their material and structural features discovered in the previous stages of the study. The models presented in this paper are used to discuss temporal relationships between faults in the kim‐ berlitic structure and material complexes comprising the pipes. The models show that the pipes occurred in the near‐ surface structures of shear tension, which developed in the areas where the NNE‐striking fault was conjugated with the ENE‐ and NE‐striking faults in the fault zone resulting from several stage of the tectono‐magmatic activity. In this case, the kimberlite melt material was transported in discrete portions from the source through deep‐seated faults, and the faults acted as channels characterized by an increased permeability. Disjunctive elements identified in this study facilitated magma movements and localization of kimberlite bodies.
921-935 867
Abstract
This paper discusses models showing the formation of the Central Mediterranean region and the geodynamic setting of the Apennine Peninsula. Cataclastic analysis is used for a repeated reconstruction of the Central Mediterranean region. The catalogue of earthquake focal mechanisms includes 662 events (3.6≤Mb≤6.5) recorded in the study area from 1977 to 2015 (Global CMT, http://www.globalcmt.org; RCMT, http://rcmt2.bo.ingv.it/index.html; Italian CMT dataset, http://rcmt2.bo.ingv.it/Italydataset.html). The reconstruction yielded the directions of principal stresses (including algebraically maximum and minimum ones), locations of domains differing in geodynamic regime, Lode – Nadai coefficients, and orientation of tangential shear stresses acting from the mantle to the crust. By comparing our results to the published data obtained by M.‐L. Zoback’s method, we have identified differences in the orientations of maximum horizontal compression axes at points where the stress ellipsoid takes on its critical values. It is revealed that the strongest earthquakes (M>6) were generated in the areas characterized by the minimum and average relative stress magnitudes.
937-943 843
Abstract
In the Kurai ridge located in the southeastern Gorny Altai (Altai Mountains, Russia) metamorphic rocks of the Kurai complex are widely developed: granite‐gneisses, crystalline schists and amphibolites, including widespread Early Carboniferous mylonites and blastomylonites. Oriented samples of blastomylonites were taken from the upper reaches of the Kuraika river for the microstructural study aimed to determine the kinematics of movements. The analyses of thin cut samples show structural‐kinematic indicators that suggest two deformation events (left‐lateral shearing, then right‐lateral shearing).
RECENT GEODYNAMICS
945-957 873
Abstract
A cross‐sections of longitudinal (P) and transverse (S) wave anomalies (attribute δ(VP/VS)) is constructed along the sublatitudinal profile from the Atlantic Ocean to the Pacific Ocean across the regions of the latest Eurasian volcanism. It is correlated with surface geophysical parameters interpretable in terms of geodynamics: heat flow, seismicity and integrated conductivity of the lithosphere. All the volcanic groups are related to the negative anomalies of S‐ and P‐wave velocity variations at depths, which are observed in the eastern part of the profile from Central Asia to the Pacific Ocean to depths of 1000 km. Such anomalies correlate with the heat flow anomalies and are thus indica‐ tive of a deep source. The absence of deep roots in the western part of the profile from the Caspian to the Western Mediterranean suggests lateral extension of the anomalously ‘hot’ mantle from the Afar branch of the African super‐ plume. The groups of volcanic formations in the Baikal region and the Far East are spatially associated with heat flow anomalies that are three times higher than the background values. A correlation between intraplate volcanism and the lithosphere conductivity suggests the presence of positive anomalies in all volcanic clusters, despite the fact that their background values are considerably different. In the continental part, velocity anomalies are typical of all volcanic groups with positive conductivity anomalies. It is evidenced by seismic tomography that all the volcanic groups (ex‐ cept the Alpine‐Caucasian) have ‘hot’ roots in the upper mantle to depths of 1200 km. The highest maximum conduc‐ tivity values are typical of the zones wherein high intraplate seismicity is absent. Along the profile, there are several zones of high intraplate seismicity, which are separated by aseismic zones or plate boundaries. This suggest the influ‐ ence of the heated state of the mantle and the occurrence of zones of increased conductivity in the lithosphere.
959-969 1035
Abstract
The studies were conducted in the territory of the Nepa‐Peleduy arch (NPA) of the Nepa‐Botuoba anteclise (NBA), which is strategically important for the Russian Federation as it contains large and unique hydrocarbon fields, including those essential for the ESPO oil pipeline and the presently under‐construction Power of Siberia gas pipeline. Because the hydrocarbon potential of the sedimentary cover is largely exhausted, the aim is now to increase the regional stocks. Verifying the hypothesis of the Corresponding Member of the Russian Academy of Sciences B.A. Sokolov, stating that the allochthonous block of the crystalline basement, overlapping the aulacogen Riphean sediments, lies at the base of the NPA, would open the possibility of increasing the hydrocarbon reserves in the ‘subbasement’ formations. It would also clarify the controversial nature of the NPA deposits, which have no sediments with a high organic carbon content. In this study, we present a Hilbert transform of a time section of the common midpoint method (CDP) from a fragment of the Batholith‐1 geotraverse passing through the Katanga saddle, the NPA and the Pre‐Patom trough, as well as geophysical materials and well data from the same profile. Supporting B.A. Sokolov’s hypothesis, we confirm the existence of a relict crystalline terrane crosscut by the wells at the base of the NPA and forming the roof of the underlying lower Vendian and Riphean sediment units. Our data clearly document the position of the western side of the inverted paleorift, the thickness of the terrane and the physical characteristics of the underlying sediments. These results are justifying hydrocarbon exploration of the ‘subbasement’ sediments.
971-993 938
Abstract
The article describes principles, methods and tasks of tectonic studies using computer processing of the Active Faults of Eurasia Database. This new database contains more than 30000 objects that are geographically linked, equipped with attributes of the kinematic type, estimated movement rates and activity confidence ranks. As an exam‐ ple, we consider processing of the data on several tectonic regions of the Alpine‐Himalayan mobile belt and construction of rose‐diagrams of faults for a comparative analysis of their Late Cenozoic kinematics. The processed data set also covered the Caucasus‐Anatolian region and the entire central part of the mobile belt, and fields of shortening/lengthening and shearing were mapped to assess the patterns of these processes in different areas and to determine the characteristics of the tectonic flow of the upper crust material. Prospects are discussed for the database processing with the use of all the available attributive information for structural‐kinematic and geodynamic analysis, including processing of the database in combination with independent remote and geophysical data.
995-1009 903
Abstract
The impacts of seismicity on the landslide activity in Kyrgyzstan have been in the focus of our study since 2010 [Kalmetyeva et al., 2010]. As the study progressed [Kalmetyeva, Moldobekov, 2012, 2013; Kalmetyeva et al., 2013, 2014], the initial problem statement has been revised as follows: do earthquake influence the occurrence of land‐ slides, and, if so, what is the mechanism of this influence. This paper presents the results of detailed analysis of the distribution of earthquakes and landslides in space and time in correlation with focal mechanisms (azimuth and plunge of the principal compression stress axis) of earthquakes occurred in the Fergana basin and its mountainous frame. These are grounds to conclude that the landslide activity is mainly influenced by the response of the internal structure of the upper crust to local stresses. The mechanism of influence of strong earthquakes on the landslide activity is redistribution of local stresses, which results from partial release of regional stresses due to rupturing in the source zones of strong earthquakes. Using this concept of the landslide activity, a methodology of landslide‐hazard mapping is the goal of our future studies aimed at the following: (1) zoning of the study area with respect to the features of the internal structure of the upper crust, (2) geological, geophysical and seismological studies of the state of stresses in the study area, (3) instrumental monitoring of landslides movements in the zones that differ in the structure of the upper crust, and (4) analysis of preparation and consequences of past strong earthquakes that took place in the study area in comparison with the landslide activity.
1011-1027 988
Abstract
This paper discusses the productive beds of the Urna and Ust‐Tegus oil fields (West Siberia, Russian) and permeability and capacity properties that are influenced by geodynamic processes. Strong tectonic processes, accompanied by periodic magma intrusions, produced numerous fractures and faults in the Jurassic sediments, which act as conduits for groundwater flows, and thus led to the hydrothermal alteration of rocks and changes in the pore space. The data presented in the paper testify to the manifestation of these processes in the modern hydrogeochemical and geothermal conditions of the Jurassic‐Cretaceous sediments within the two oil fields and their vicinity. The petrophysical studies of the core samples and the hydrodynamic studies in the wells confirm that the reservoir properties of the productive strata are considerably heterogeneous. Despite the significant effect of the geodynamic factors, the analysis of the tracer data has not revealed any apparent spatial consistency of the presence (or absence) of a hydrodynamic connection between the wells and the locations of fractured and dynamically stressed zones. In our study, we have proposed and tested a method based on the analysis of morphotectonic features detectable in the depth maps of reference surfaces. This method is a useful additional tool for discovering and analyzing the relationships between the tectonic and hydrodynamic conditions of oil and gas fields.
1029-1044 1007
Abstract
This study was aimed to reveal relationships between the formation of the structures of river systems and to discover the tectonic structural features of the territory. We analyzed the morphometric parameters of river catchment areas of various orders, which comprise the Kama river basin. A digital terrain model in ESRI ArcGis 10.4 geoinformation system was used. Within the identified river basin geosystems, quantitative morphometric characteristics of the terrain were calculated for comparative analysis. Multidimensional statistical analysis methods were used to group the basins with respect to their sets of geometric and morphometric characteristics. A spatial typification technique was developed to distinguish the basin geosystems by their morphometric indicators. This study pioneered in using the results of cluster analysis for identification of seven groups of basins, which reflect the spatial heterogeneity of the ancient tectonic elements and the geomorphological conditions within the entire territory of the Kama river basin. It is established that the types of the river basin geosystems with characteristic morphometric features are related to various ancient tectonic structures, which suggests a genetic relationship of endogenous processes of river channel fracturing and the diversity of geometric parameters of different river basins.
1045-1058 1331
Abstract
The article reviews the experience of aerial surveys using a quadcopter DJI Inspire 1 PRO (unmanned aerial vehicle, UAV) for solving problems of engineering geodynamics. It describes the application of photogrammetry to estimate quantitative parameters of the studied objects, the experience of using UAVs to study flood processes in the Tunka valley (Russia) and erosion structures in the Ulaanbaatar agglomeration (Mongolia). The first UAV‐acquired data on debris flow alluvial fans and elementary drainage basins of erosion structures are presented. The ranges of UAV flight heights were 100–150 m and 1–30 m for local and detailed aerial photography surveys, respectively. Local surveys covered relatively large objects – debris flow alluvial fans and drainage basins. Detailed aerial photography aimed to investigate the granulometric compositions of debris flow deposits and to construct transverse profiles of erosion structures. Processed aerial photos provided a basis for a schematic map showing the distribution of accumu‐ lated debris flow deposits. The granulometric compositions of coarse fractions in the debris flow deposits were de‐ termined. Based on the survey results, 3D models of the fragments of the erosion structures and their cross‐sections were constructed.
ISSN 2078-502X (Online)