Preview

Геодинамика и тектонофизика

Расширенный поиск

ТЕМПЕРАТУРНЫЕ АНОМАЛИИ ПЕРЕД ЗЕМЛЕТРЯСЕНИЕМ В ПРОВИНЦИИ ГОРКХА (НЕПАЛ) В 2015 Г., УСТАНОВЛЕННЫЕ ПО ЗНАЧЕНИЯМ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ЗЕМЛИ MODIS И УХОДЯЩЕГО ДЛИННОВОЛНОВОГО ИЗЛУЧЕНИЯ

https://doi.org/10.5800/GT-2018-9-1-0341

Полный текст:

Аннотация

Землетрясения способны создавать тепловые аномалии в атмосфере на малых высотах. Такие аномалии могут рассматриваться в качестве вероятного предвестника при прогнозирования землетрясений, в связи с чем требуются целенаправленные детальные исследования. На сегодня знаний о тепловых аномалиях, появляющихся перед землетрясениями, недостаточно. В статье представлены результаты изучения термических аномалий, имевших место перед землетрясением в провинции Горкха (Непал) (Mw=7.8) 25 апреля 2015 г., как свидетельствуют значения температуры поверхности Земли, зарегистрированные сканирующими спектрорадиометрами среднего разрешения MODIS, а также данные о температуре атмосферного воздуха и уходящего длинноволнового излучения (OLR). Метод вейвлет-преобразования в двух- и трехмерном пространстве использован для интерпретации повышения суточных значений MODIS и OLR в реальном времени накануне землетрясения. По спектральной плотности накануне реального сейсмического события установлены аномальные значения MODIS и OLR, связанные с приближением этого землетрясения. Пространственные снимки MODIS и OLR показывают эволюционирующий характер эманации ионов из эпицентра и прилегающей области. Наиболее важной особенностью, выявленной посредством пространственного анализа, следует считать миграцию температурных облаков в восточном направлении вследствие усилившегося электрического поля. Спутниковые данные LST показывают отклонение от верхней границы значений на 5 °C. Все наблюдения в нашем исследовании подтверждают понятие тепловых аномалий накануне землетрясения. Исходя из анализа результатов, можно сделать вывод, что избыток ионов из сейсмогенной зоны обусловливает появление больших температурных возмущений в слоях атмосферы.

Об авторах

Мунавар Шах
Университет для женщин.
Пакистан
Сваби.


Маджид Хан
Университет Китайской академии наук.
Китай
Пекин.


Хавиз Уллах
Университет Каид-и Азам.
Пакистан
Исламабад.


Саджад Али
Университет Каид-и Азам.
Пакистан
Исламабад.


Список литературы

1. Akhoondzadeh M., 2012. Anomalous TEC variations associated with the powerful Tohoku earthquake of 11 March 2011. Natural Hazards and Earth System Sciences 12 (5), 1453–1462. https://doi.org/10.5194/nhess-12-1453-2012.

2. Cao M., Qiao P., 2008. Integrated wavelet transform and its application to vibration mode shapes for the damage detection of beam-type structures. Smart Materials and Structures 17 (5), 055014. https://doi.org/10.1088/0964-1726/17/5/055014.

3. Cervone G., Maekawa S., Singh R. P., Hayakawa M., Kafatos M., Shvets A., 2006. Surface latent heat flux and nighttime LF anomalies prior to the Mw=8.3 Tokachi-Oki earthquake. Natural Hazards and Earth System Science 6 (1), 109–114. https://doi.org/10.5194/nhess-6-109-2006.

4. Freund F., 2000. Time-resolved study of charge generation and propagation in igneous rocks. Journal of Geophysical Research: Solid Earth 105 (B5), 11001–11019. https://doi.org/10.1029/1999JB900423.

5. Freund F., 2003. Rocks that crackle and sparkle and glow: strange pre-earthquake phenomena. Journal of Scientific Exploration 17 (1), 37–71.

6. Freund F., 2010. Toward a unified solid state theory for pre-earthquake signals. Acta Geophysica 58 (5), 719–766. https://doi.org/10.2478/s11600-009-0066-x.

7. Freund F., Takeuchi A., Lau B.W.S., Al-Manaseer A., Fu C.C., Byrant N.A., Ozounov D., 2007. Stimulated infrared emission from rocks: assessing a stress indicator. eEarth 2 (1), 7–16.

8. Grinsted A., Moore J., Jevrejeva S., 2004. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes in Geophysics 11 (5–6), 561–566. https://doi.org/10.5194/npg-11-561-2004.

9. He L.M., Wu L.X., De Santis A., Liu S.J., Yang Y., 2014. Is there a one-to-one correspondence between ionospheric anomalies and large earthquakes along Longmenshan faults? Annales Geophysicae 32 (2), 187–196. https://doi.org/10.5194/angeo-32-187-2014.

10. Jianxi H., Feng M., Wensheng Z., Xianlong Z., 2008. Satellite thermal IR associated with Wenchuan earthquake in China using MODIS data. In: Proceedings of the 14th World Conference on Earthquake Engineering (October 12–17, 2008, Beijing, China), p. 12–17.

11. Jin S.G., Occhipinti G., Jin R., 2015. GNSS ionospheric seismology: Recent observation evidences and characteristics. Earth-Science Reviews 147, 54–64. https://doi.org/10.1016/j.earscirev.2015.05.003.

12. Jin S.G., Zhu W.Y., Afraimovich E., 2010. Co-seismic ionospheric and deformation signals on the 2008 magnitude 8.0 Wenchuan Earthquake from GPS observations. International Journal of Remote Sensing 31 (13), 3535–3543. https://doi.org/10.1080/01431161003727739.

13. Kang C.L., Han Y.B., Liu D.F., Cao Z.Q., 2008. The OLR anomaly and mechanism before Tibet earthquake M 6.9. Progress in Geophysics 6, 1703–1708 (in Chinese with English abstract).

14. Kuo C.L., Huba J.D., Joyce G., Lee L.C., 2011. Ionosphere plasma bubbles and density variations induced by pre‐earthquake rock currents and associated surface charges. Journal of Geophysical Research: Space Physics 116 (A10), A10317. https://doi.org/10.1029/2011JA016628.

15. Liebmann B., 1996. Description of a complete (interpolated) outgoing long wave radiation dataset. Bulletin of the American Meteorological Society 77 (6), 1275–1277.

16. Liperovsky V.A., Meister C.V., Liperovskaya E.V., Vasil’eva N.E., Alimov O., 2005. On spread-Es effects in the ionosphere before earthquakes. Natural Hazards and Earth System Science 5 (1), 59–62. https://doi.org/10.5194/nhess-5-59-2005.

17. Liu J.Y., Chen Y.I., Chen C.H., Liu C.Y., Chen C.Y., Nishihashi M., Li J.Z., Xia Y.Q., Oyama K.I., Hattori K., Lin C.H., 2009. Seismoionospheric GPS total electron content anomalies observed before the 12 May 2008 Mw 7.9 Wenchuan earthquake. Journal of Geophysical Research: Space Physics 114 (A4), A04320. https://doi.org/10.1029/2008JA013698.

18. Ouzounov D., Liu D., Chunli K., Cervone G., Kafatos M., Taylor P., 2007. Outgoing long wave radiation variability from IR satellite data prior to major earthquakes. Tectonophysics 431 (1–4), 211–220. https://doi.org/10.1016/j.tecto.2006.05.042.

19. Piroddi L., Ranieri G., Freund F.T., Trogu A., 2014a. TIR, tectonics and geology in L’Aquila 2009. In: Proceeding of Electromagnetic Studies of Earthquakes and Volcanoes (EMSEV) 2014, Warsaw, Poland, p. 37–40.

20. Piroddi L., Ranieri G., Freund F.T., Trogu A., 2014b. Geology, tectonics and topography underlined by L’Aquila earthquake TIR precursors. Geophysical Journal International 197 (3), 1532–1536. https://doi.org/10.1093/gji/ggu123.

21. Píša D., Parrot M., Santolík O., 2011. Ionospheric density variations recorded before the 2010 Mw 8.8 earthquake in Chile. Journal of Geophysical Research: Space Physics 116 (A8), A08309. https://doi.org/10.1029/2011JA016611.

22. Pulinets S., Ouzounov D., 2011. Lithosphere – Atmosphere – Ionosphere Coupling (LAIC) model – An unified concept for earthquake precursors validation. Journal of Asian Earth Sciences 41 (4–5), 371–382. https://doi.org/10.1016/j.jseaes.2010.03.005.

23. Pulinets S.A., Ouzounov D., Ciraolo L., Singh R., Cervone G., Leyva A., Dunajecka M., Karelin A.V., Boyarchuk K.A., Kotsarenko A., 2006b. Thermal, atmospheric and ionospheric anomalies around the time of the Colima M 7.8 earthquake of 21 January 2003. Annales Geophysicae 24 (3), 835–849. https://doi.org/10.5194/angeo-24-835-2006.

24. Qin K., Wu L.X., De Santis A., Meng J., Ma W.Y.,Cianchini G., 2012. Quasi-synchronous multi-parameter anomalies associated with the 2010–2011 New Zealand earthquake sequence. Natural Hazards and Earth System Sciences 12 (4), 1059–1072. https://doi.org/10.5194/nhess-12-1059-2012.

25. Rawat V., Saraf A.K., Das J., Sharma K., Shujat Y., 2011. Anomalous land surface temperature and outgoing long-wave radiation observations prior to earthquakes in India and Romania. Natural Hazards 59 (1), 33–46. https://doi.org/10.1007/s11069-011-9736-5.

26. Saradjian M.R., Akhoondzadeh M., 2011. Thermal anomalies detection before strong earthquakes (Mw>6.0) using interquartile, wavelet and Kalmanfilter methods. Natural Hazards and Earth System Sciences 11(4), 1099–1108. https://doi.org/10.5194/nhess-11-1099-2011.

27. Saraf A.K., Rawat V., Banerjee P., Choudhury S., Panda S.K., Dasgupta S., Das J.D., 2008. Satellite detection of earthquake thermal infrared precursors in Iran. Natural Hazards 47 (1), 119–135. https://doi.org/10.1007/s11069-007-9201-7.

28. Shah M., Jin S.G., 2015. Statistical characteristics of seismo-ionospheric GPS TEC disturbances prior to global Mw≥5.0 earthquakes (1998–2014). Journal of Geodynamics 92, 42–49. https://doi.org/10.1016/j.jog.2015.10.002.

29. Tronin A.A., Biagi P.F., Molchanov O.A., Khatkevich Y.M., Gordeev E.I., 2004. Temperature variations related to earthquakes from simultaneous observation at the ground stations and by satellites in Kamchatka area. Physics and Chemistry of the Earth, Parts A/B/C 29 (4–9), 501–506. https://doi.org/10.1016/j.pce.2003.09.024.

30. Xiong P., Shen X.H., Bi Y.X., Kang C.L., Chen L.Z., Jing F., Chen Y., 2010. Study of outgoing longwave radiation anomalies associated with Haiti earthquake. Natural Hazards and Earth System Sciences 10 (10), 2169–2178. https://doi.org/10.5194/nhess-10-2169-2010.

31. Zhang X., Shen X., Liu J., Ouyang X., Qian J., Zhao S., 2009. Analysis of ionospheric plasma perturbations before Wenchuan earthquake. Natural Hazards and Earth System Sciences 9 (4), 1259–1266. https://doi.org/10.5194/nhess-9-1259-2009.

32. Zhou X., Du J., Chen Z., Cheng J., Tang Y., Yang L., Xie C., Cui Y., Liu L., Yi L., 2010. Geochemistry of soil gas in the seismic fault zone produced by the Wenchuan Ms 8.0 earthquake, southwestern China. Geochemical Transactions 11 (1), Article 5. https://doi.org/10.1186/1467-4866-11-5.


Для цитирования:


Шах М., Хан М., Уллах Х., Али С. ТЕМПЕРАТУРНЫЕ АНОМАЛИИ ПЕРЕД ЗЕМЛЕТРЯСЕНИЕМ В ПРОВИНЦИИ ГОРКХА (НЕПАЛ) В 2015 Г., УСТАНОВЛЕННЫЕ ПО ЗНАЧЕНИЯМ ТЕМПЕРАТУРЫ ПОВЕРХНОСТИ ЗЕМЛИ MODIS И УХОДЯЩЕГО ДЛИННОВОЛНОВОГО ИЗЛУЧЕНИЯ. Геодинамика и тектонофизика. 2018;9(1):123-138. https://doi.org/10.5800/GT-2018-9-1-0341

For citation:


Shah M., Khan M., Ullah H., Ali S. THERMAL ANOMALIES PRIOR TO THE 2015 GORKHA (NEPAL) EARTHQUAKE FROM MODIS LAND SURFACE TEMPERATURE AND OUTGOING LONGWAVE RADIATIONS. Geodynamics & Tectonophysics. 2018;9(1):123-138. https://doi.org/10.5800/GT-2018-9-1-0341

Просмотров: 245


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)