Preview

Геодинамика и тектонофизика

Расширенный поиск

Решение тематических задач при изучении экзогенных геологических процессов с применением неспециализированных беспилотных комплексов для аэрофотосъемки

https://doi.org/10.5800/GT-2019-10-4-0457

Полный текст:

Аннотация

В статье рассмотрен опыт применения комплекса для аэрофотосъемки на базе мультироторного беспилотного летательного аппарата (БПЛА) при решении различных задач в области инженерной геодинамики, в частности, для получения количественных показателей исследуемых объектов с использованием фотограмметрического метода. Рассматривается опыт использования БПЛА при исследовании селевых процессов в предгорьях Тункинских гольцов (Россия) и эрозионных форм в пределах Улан‐Баторской агломерации (Монголия). Представлены первые результаты исследований конусов выноса селевых бассейнов и элементарных водосборных бассейнов эрозионных форм. Для изучения вышеперечисленных процессов была выполнена разномасштабная аэрофотосъемка – локальная и детальная, с использованием БПЛА. Локальная аэрофотосъемка, высота полета 100–150 м, применялась при изучении относительно крупных объектов – конусов выноса, локальных водосборных бассейнов. Детальная аэрофотосъемка, высота полета 1–30 м, использовалась как для получения данных гранулометрического состава селевых отложений, так и для построения поперечных профилей эрозионных форм. По результатам проведенной работы составлена схема рас‐ пределения аккумулятивных селевых отложений, определен гранулометрический состав крупной фракции селевых отложений. На основе созданных по результатам аэрофотосъемки трехмерных моделей фрагментов эрозионных форм построены поперечные профили этих форм.

Об авторах

А. А. Рыбченко
Институт земной коры СО РАН; Иркутский научный центр СО РАН
Россия

канд. геол.-мин. наук, с.н.с., 664033, Иркутск, ул. Лермонтова, 128;

664033, Иркутск, ул. Лермонтова, 134



А. В. Кадетова
Институт земной коры СО РАН
Россия

канд. геол.-мин. наук, с.н.с.,

664033, Иркутск, ул. Лермонтова, 128



Е. А. Козырева
Институт земной коры СО РАН; Иркутский научный центр СО РАН
Россия

канд. геол.-мин. наук, зав. лабораторией, 664033, Иркутск, ул. Лермонтова, 128;

664033, Иркутск, ул. Лермонтова, 134



А. А. Юрьев
Институт земной коры СО РАН
Россия
664033, Иркутск, ул. Лермонтова, 128


Список литературы

1. Adams M.S., Fromm R., Lechner V., 2016. High-resolution debris flow volume mapping with unmanned aerial systems (UAS) and photogrammetric techniques. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences XLI-B1, 749–755. https://doi.org/10.5194/isprs-archives-XLI-B1-749-2016.

2. Agafonov B.P., Rogozin A.A., 1987. Quantitative assessment of debris flow drift into Lake Baikal. In: Problems of geology and paleogeography of Siberia and the Far East. Irkutsk State University Publishing House, Irkutsk, p. 53–63 (in Russian).

3. Benoit L., Gourdon A., Vallat R., Irarrazaval I., Gravey M., Lehmann B., Prasicek G., Gräff D., Herman F., Mariethoz G., 2019. A high-resolution image time series of the Gorner Glacier–Swiss Alps–derived from repeated unmanned aerial vehicle surveys. Earth System Science Data 11 (2), 579–588. https://doi.org/10.5194/essd-11-579-2019.

4. Buill F., Núñez-Andrés M.A., Lantada N., Prades A., 2016. Comparison of Photogrammetric Techniques for Rockfalls Monitoring. IOP Conference Series: Earth and Environmental Science 44 (4), 042023. https://doi.org/10.1088/1755-1315/44/4/042023.

5. Buri P., Miles E.S., Steiner J.F., Immerzeel W.W., Wagnon P., Pellicciotti F., 2016. A physically based 3-D model of ice cliff evolution over debris-covered glaciers. Journal of Geophysical Research: Earth Surface 121 (12), 2471–2493. https://doi.org/10.1002/2016JF004039.

6. Caron R.M., Samson C., Straznicky P., Ferguson S., Sander L., 2014. Aeromagnetic surveying using a simulated unmanned aircraft system. Geophysical Prospecting 62 (2), 352–363. https://doi.org/10.1111/1365-2478.12075.

7. Coe J.A., Baum R.L., Allstadt K.E., Kochevar Jr. B.F., Schmitt R.G., Morgan M.L., White J.L., Stratton B.T., Hayashi T.A., Kean J.W., 2016. Rock-avalanche dynamics revealed by large-scale field mapping and seismic signals at a highly mobile avalanche in the West Salt Creek valley, western Colorado. Geosphere 12 (2), 607–631. https://doi.org/10.1130/GES01265.1.

8. Colomina I., Molina P., 2014. Unmanned aerial systems for photogrammetry and remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing 92, 79–97. https://doi.org/10.1016/j.isprsjprs.2014.02.013.

9. Comert R., Avdan U., Gorum T., Nefeslioglu H.A., 2019. Mapping of shallow landslides with object-based image analysis from unmanned aerial vehicle data. Engineering Geology 260, 105264. https://doi.org/10.1016/j.enggeo.2019. 105264.

10. Deineko V.F., 1968. Aerophotogeodesy. Nedra, Moscow, 328 p. (in Russian) [Дейнеко В.Ф. Аэрофотогеодезия. М.: Недра, 1968. 328 с.].

11. Fan J.R., Zhang X.Y., Su F.H., Ge Y.G., Tarolli P., Yang Z.Y., Zeng C., Zeng Z., 2017. Geometrical feature analysis and disaster assessment of the Xinmo landslide based on remote sensing data. Journal of Mountain Science 14 (9), 1677–1688. https://doi.org/10.1007/s11629-017-4633-3.

12. Feng Q., Liu J., Gong J., 2015. Urban flood mapping based on unmanned aerial vehicle remote sensing and random forest classifier – A case of Yuyao, China. Water 7 (4), 1437–1455. https://doi.org/10.3390/w7041437.

13. Firsov A.P., Zlygostev I.N., Dyadkov P.G., Savluk A.V., Veisman P.A., Vald A.K., Sheremet A.S., Yevmenov N.D., 2015. The use of high-frequency magnetometer for light UAV geological and geophysical studies of volcanic pipes. Interexpo Geo-Siberia 2 (2), 299–304 (in Russian).

14. Gerasimov V.P., Darzhaniya A.Yu., Kovalev V.D., 2014. Features of processing video information in the UAV differential correlator. Bulletin of the North Caucasus Federal University (4), 28–33 (in Russian).

15. Giordan D., Manconi A., Remondino F., Nex F., 2017. Use of unmanned aerial vehicles in monitoring application and management of natural hazards. Geomatics, Natural Hazards and Risk 8 (1), 1–4. https://doi.org/10.1080/19475705.2017.1315619.

16. Gladkochub D.P. (Ed.), 2017. Hazardous Geological Processes and Forecasting of Natural Disasters in the Territory of Central Mongolia. Irkutsk State University Publishing House, Irkutsk, 325 p. (in Russian).

17. Gomez C., Purdie H., 2016. UAV-based photogrammetry and geocomputing for hazards and disaster risk monitoring – a review. Geoenvironmental Disasters 3 (1), 23. https://doi.org/10.1186/s40677-016-0060-y.

18. Gonin G.B., 1980. Space Photography for Study of Natural Resources. Nedra, Leningrad, 319 p. (in Russian).

19. González-Jorge H., Bueno M., Martínez-Sánchez J., Arias P., 2017. Low-Altitude Long-Endurance Solar Unmanned Plane for Forest Fire Prevention: Application to the Natural Park of Serra do Xures (spain). International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W6, 135–139. https://doi.org/10.5194/isprs-archives-XLII-2-W6-135-2017.

20. Gorshkov I.F., 1979. Hydrological Calculations. Gidrometeoizdat, Leningrad, 432 p. (in Russian).

21. Gray J.M.N.T., Kokelaar B.P., 2010. Large particle segregation, transport and accumulation in granular free-surface flows. Journal of Fluid Mechanics 652, 105–137. https://doi.org/10.1017/S002211201000011X.

22. Hänsel P., Kaiser A., Buchholz A., Böttcher F., Langel S., Schmidt J., Schindewolf M., 2018. Mud flow reconstruction by means of physical erosion modeling, high-resolution radar-based precipitation data, and UAV monitoring. Geosciences 8 (11), 427. https://doi.org/10.3390/geosciences8110427.

23. Imaizumi F., Masui T., Yokota Y., Tsunetaka H., Hayakawa Y.S., Hotta N., 2019. Initiation and runout characteristics of debris flow surges in Ohya landslide scar, Japan. Geomorphology 339, 58–69. https://doi.org/10.1016/j.geomorph.2019.04.026.

24. Immerzeel W.W., Kraaijenbrink P.D.A., Shea J.M., Shrestha A.B., Pellicciotti F., Bierkens M.F.P., De Jong S.M., 2014. Highresolution monitoring of Himalayan glacier dynamics using unmanned aerial vehicles. Remote Sensing of Environment 150, 93–103. https://doi.org/10.1016/j.rse.2014.04.025.

25. Izumida A., Uchiyama S., Sugai T., 2017. Application of UAV-SfM photogrammetry and aerial lidar to a disastrous flood: repeated topographic measurement of a newly formed crevasse splay of the Kinu River, central Japan. Natural Hazards and Earth System Sciences 17 (9), 1505–1519. https://doi.org/10.5194/nhess-17-1505-2017.

26. Johnson C.G., Kokelaar B.P., Iverson R.M., Logan M., LaHusen R.G., Gray J.M.N.T., 2012. Grain-size segregation and levee formation in geophysical mass flows. Journal of Geophysical Research: Earth Surface 117 (F1), F01032. https://doi.org/10.1029/2011JF002185.

27. Kadetova A.A., Rybchenko E.A., Kozyreva E.A., Yongbo T., Huayong N., 2016a. Debris flow event of 2014 and its impact on the accumulation of the solid fraction in the Kyngarga river channel, Tunka valley, Southwestern Cisbaikalia, Russia. Geodynamics & Tectonophysics 7 (2), 329–335. https://doi.org/10.5800/GT-2016-7-2-0210.

28. Kadetova A.V., Rybchenko A.A., Kozireva E.A., Pellinen V.A., 2016b. Debris flows of 28 June 2014 near the Arshan village (Siberia, Republic of Buryatia, Russia). Landslides 13 (1), 129–140. https://doi.org/10.1007/s10346-015-0661-7.

29. Karantanellis E., Marinos V., Vassilakis E., 2019. 3D hazard analysis and object-based characterization of landslide motion mechanism using UAV imagery. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W13, 425–430. https://doi.org/10.5194/isprs-archives-XLII-2-W13-425-2019.

30. Kozyreva E.A., Mazaeva O.A., Rybchenko A.A., 2014b. Study of erosion of temporary streams in the Ulaanbaatar basin (Mongolia). In: Sergeyev Readings. Issue 16. Peoples' Friendship University of Russia, Moscow, p. 278–282 (in Russian).

31. Kozyreva E.A., Mazaeva O.A., Rybchenko A.A., Bayarsayhan K., Demberel S., 2016. Dangerous exogenous geological processes of the Mongolia-Siberian region (factors, assessment, control). In: Modern geodynamics of Central Asia and hazardous natural processes: results of studies on quantitative basis. Institute of the Earth’s Crust SB RAS, Irkutsk, p. 223–228 (in Russian).

32. Kozyreva E.A., Mazaeva O.A., Rybchenko A.A., Demberel S., 2014a. Hazardous geological processes (conditions, identification) and assurance of geoecological safety of the Ulaanbaatar basin. In: Modern geodynamics and hazardous natural processes in Central Asia. Issue 8. Proceedings of the 10th Russian–Mongolian Conference on Astronomy and Geophysics. Institute of the Earth’s Crust SB RAS, Irkutsk, p. 139–150 (in Russian).

33. Krasnopevtsev B.V., 2008. Photogrammetry. UPP Reprography MIIGAiK, Moscow, 160 p. (in Russian).

34. Lazzari M., Piccarreta M., 2018. Landslide disasters triggered by extreme rainfall events: The case of Montescaglioso (Basilicata, Southern Italy). Geosciences 8 (10), 377. https://doi.org/10.3390/geosciences8100377.

35. Liu C.C., Chen P.L., Matsuo T., Chen C.Y., 2015. Rapidly responding to landslides and debris flow events using a low-cost unmanned aerial vehicle. Journal of Applied Remote Sensing 9 (1), 096016. https://doi.org/10.1117/1.JRS.9.096016.

36. Luo W., Xu X., Liu W., Liu M., Li Z., Peng T., Xu C., Zhang Y., Zhang R., 2019. UAV based soil moisture remote sensing in a karst mountainous catchment. Catena 174, 478–489. https://doi.org/10.1016/j.catena.2018.11.017.

37. Makarov S.A., Cherkashina A.A., Atutova Zh.V., Bardash A.V., Voropai N.N., Kichigina N.V., Mutin B.F., Osipova O.P., Ukhova N.N., 2014. Catastrophic Debris Flow, Occurred in the Village of Arshan, Tunkinsky District, Republic of Buryatia, in June 28, 2014. V.B. Sochava Institute of Geography SB RAS, Irkutsk, 111 p. (in Russian).

38. Nagatani K., Kiribayashi S., Yajima R., Hada Y., Izu T., Zeniya A., Kanai H., Kanasaki H., Minagawa J., Moriyama Y., 2018. Micro-unmanned aerial vehicle-based volcano observation system for debris flow evacuation warning. Journal of Field Robotics 35 (8), 1222–1241. https://doi.org/10.1002/rob.21834.

39. Parshin A.V., Morozov V.A., Blinov A.V., Kosterev A.N., Budyak A.E., 2018. Low-altitude geophysical magnetic prospecting based on multirotor UAV as a promising replacement for traditional ground survey. Geo-spatial Information Science 21 (1), 67–74. https://doi.org/10.1080/10095020.2017.1420508.

40. Pellicani R., Argentiero I., Manzari P., Spilotro G., Marzo C., Ermini R., Apollonio C., 2019. UAV and airborne LiDAR data for interpreting kinematic evolution of landslide movements: the case study of the Montescaglioso landslide (Southern Italy). Geosciences 9 (6), 248. https://doi.org/10.3390/geosciences9060248.

41. Pisarsky B.I., Rogozin A.A., 1975. The use of aeromethods to assess ice runoff. Vodnye Resursy (Water Resources) (2), 61–63 (in Russian).

42. Popescu D., Ichim L., Stoican F., 2017. Unmanned aerial vehicle systems for remote estimation of flooded areas based on complex image processing. Sensors 17 (3), 446. https://doi.org/10.3390/s17030446.

43. Rogozin A.A., Trzhtsinsky Yu.B., 1993. Technogenic activation of abrasion-accumulative processes on the shores of Lake Baikal. Geoekologiya. Inzhenernaya Geologiya. Gidrogeologiya. Geokriologiya (Geoecology. Engineering Geology. Hydrogeology. Geocryology) (6), 80–85 (in Russian).

44. Rossi G., Tanteri L., Tofani V., Vannocci P., Moretti S., Casagli N., 2018. Multitemporal UAV surveys for landslide mapping and characterization. Landslides 15 (5), 1045–1052. https://doi.org/10.1007/s10346-018-0978-0.

45. Rybchenko A.A., Kadetova A.V., Kozireva E.A., 2018. Relation between basin morphometric features and dynamic characteristics of debris flows – a case study in Siberia, Russia. Journal of Mountain Science 15 (3), 618–630. https://doi.org/10.1007/s11629-017-4547-0.

46. Rybchenko A.A., Mazaeva O.A., Kozyreva E.A., 2011. Gunzhin, Khustay and Emelt sites: features of composition, structure and properties of soils. In: The 9th Russian-Mongolian Conference on Astronomy and Geophysics, Irkutsk, p. 35–35 (in Russian).

47. Tziavou O., Pytharouli S., Souter J., 2018. Unmanned Aerial Vehicle (UAV) based mapping in engineering geological surveys: Considerations for optimum results. Engineering Geology 232, 12–21. https://doi.org/10.1016/j.enggeo. 2017.11.004.

48. Valkaniotis S., Papathanassiou G., Ganas A., 2018. Mapping an earthquake-induced landslide based on UAV imagery; case study of the 2015 Okeanos landslide, Lefkada, Greece. Engineering Geology 245, 141–152. https://doi.org/10.1016/j.enggeo.2018.08.010.

49. Yong L., Xiaojun Z., Pengcheng S., Yingde K., Jingjing L., 2013. A scaling distribution for grain composition of debris flow. Geomorphology 192, 30–42. https://doi.org/10.1016/j.geomorph.2013.03.015.

50. Yu M., Huang Y., Zhou J., Mao L., 2017. Modeling of landslide topography based on micro-unmanned aerial vehicle photography and structure-from-motion. Environmental Earth Sciences 76 (15), 520. https://doi.org/10.1007/s12665-017-6860-x.


Для цитирования:


Рыбченко А.А., Кадетова А.В., Козырева Е.А., Юрьев А.А. Решение тематических задач при изучении экзогенных геологических процессов с применением неспециализированных беспилотных комплексов для аэрофотосъемки. Геодинамика и тектонофизика. 2019;10(4):1045-1058. https://doi.org/10.5800/GT-2019-10-4-0457

For citation:


Rybchenko A.A., Kadetova A.V., Kozyreva E.A., Yuriev A.A. Experience of using non‐specialized unmanned aerial vehicles for aerial surveys in the studies of exogenous geological processes. Geodynamics & Tectonophysics. 2019;10(4):1045-1058. https://doi.org/10.5800/GT-2019-10-4-0457

Просмотров: 190


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)