Preview

Geodynamics & Tectonophysics

Advanced search
Vol 8, No 2 (2017)

PALEOGEODYNAMICS

217-222 1790
Abstract
This issue of Geodynamics & Tectonophysics presents the state-of-the-art studies of mingling processes and investigations of the interactions between the mafic and acidic melts of contrasting compositions at various depths of the Earth's crust. The diagnostic features and the genesis of magmatic and synmetamorphic mingling are discussed with respect to the reference objects of Altaides and Uralides. Several papers report on the results of mathematical simulation used to discover the mechanism for lifting the high-density basite inclusions in a chamber or a dyke filled with salic magma. This special issue is intended for researchers and specialists in geology, petrology and geodynamics of magmatic processes in the crust, as well as for lecturers, post-graduate students and university students.
223-268 1103
Abstract
In the Chernorud granulite zone in the Olkhon region of West Pribaikalie, we studied gabbro‐pyroxenites composing tectonic plates (Chernorud, Tonta) and synmetamorphic intrusive bodies (Ulan‐Khargana), as well as nu‐ merous disintegrated boudins and inclusions embedded in the metamorphic matrix. Based on the results of compara‐ tive analysis of the chemical compositions, the gabbro‐pyroxenites are classified into a single island‐arc tholeiitic se‐ ries. The COMAGMAT software was used to simulate this series and to estimate the initial composition of the parent magma (magnesian basalt: SiO2=46.0 wt. %, TiO2=0.8 wt. %, Al2O3=15.3 wt. %, ΣFeO=9.0 wt. %, MnO=0.15 wt. %, MgO=10.5 wt. %, CaO=17.0 wt. %, Na2O=1.0 wt. %, K2O=0.2 wt. %, P2O5=0.05 wt. %, total = 100.0 %, Mg# = 67.5 %). It is concluded that the granulite metamorphism (P=7.7 to 8.6 kbar, T=770 to 820 °C) was due not only to dipping of the initial sedimentary‐volcanic series to a depth of 25–28 km, but also to the presence of a deep chamber of magnesian basalt magma. In our estimations, garnet‐pyroxenites (i.e. mafic rocks of the top facies in the above‐mentioned cham‐ ber) originated at P=8.0–8.3 kbar and T=900–930 °C. Considering petrology, the deep mafic chamber under the layer of granulite facies is evidenced by metamorphic magma mingling, as well as pipe‐shaped intrusions characterized by the specific morphology, internal structure and bulk rock compositions. Based on the data on the Ulan‐Khargana mas‐ sif and gabbro‐pyroxenite bodies involved in the structure of the marble melange, we propose a petrological model showing two stages of mafic injection – Stage 1: hydraulic fracturing of granulite series and the emergence of tubular structures and bodies, which are similar to kimberlite pipes or channels of different shapes; Stage 2: rising of the flu‐ idized residual alkaline melt through the emerging ‘pipes’ and fractures armored by hardened zones, which is fol‐ lowed by metamorphic magma mingling under viscous deformation conditions. The mafic magmas intruding to the level of the granulite facies facilitated the deep anatexis and formation of synmetamorphic hypersthene plagiogranites (U‐Pb isotope dating: 500–490 Ma) and high‐K stress granites. In the Chernorud granulite zone, intense ductile‐plastic and brittle‐plastic deformations accompanied the processes of metamorphism, intrusion and formation of gabbro‐ pyroxenites and the anatexis of the crustal substance. As a result, the intrusive bodies were fragmented, and specific tectonic structures termed ‘metamorphic magma‐mingling’ were formed. All the tectonic and magmatic structures were subsequently ‘sealed up’ by K‐Na synkinematic granites at the regressive stage under conditions of the amphibo‐ lite‐facies metamorphism (U‐Pb and Ar‐Ar isotope dating: 470–460 Ma).
269-281 847
Abstract
Our study of aplite dykes cross‐cutting the Oshurkov basite massif revealed drop‐shaped inclusions of the monzonite composition. These are crystallized drops of basite melts, which show traces of the interaction with the host acidic melt. The Ar‐Ar method was applied to determine the age of the aplites (114.9 Ma for biotite) and the monzonite inclusions (123.3 Ma for amphibole).
283-310 1311
Abstract
In West Sangilen (South‐East Tuva, Russia), there are outcrops of metamorphic and magmatic complexes of early Caledonides, which are related to the period of long‐term collisional and post‐collisional events in the north‐ western edge of the Tuva‐Mongolian massif. The evolution of orogenic structures in West Sangilen is an example of the collapse of folded structures in case of changes in tectonic regimes from compression and transpression (collision period) to intra‐ and marginal continental transform‐shear extension (post‐collision period). Numerous geologic fea‐ tures give evidence of changes in the kinematics and characteristics of deformations, as well as in the conditions of metamorphism and magmatism in the study region. However, thinning of the crust during the collapse of the colli‐ sional orogenic structure has not been supported by any direct data. Indicators of such events are the complexes of combined dykes, which are abundant in West Sangilen, especially in the area between the Erzin and Naryn rivers and on the right bank of the Erzin river. The most representative object is a combined basite‐granite dyke at the foot of the Tavit‐Dag mountain. Its position is controlled by the strike‐slip fault system. The thermochronological analysis of mingling rocks shows different ages of the closure of isotope systems: 494.8±5.4 Ma (U/Pb, zircon, basites), 489.7±7 Ma (U/Pb, zircon, granitoids), 471.2±1.9 Ma (Ar/Ar , amphibole, basites), and 462.5±1.0 Ma (Ar/Ar, biotite, basites). Taking into account the parameters of the closure of isotope systems (~800–900 °C, zircon, U/Pb; ~500 °C, amphi‐ bole, Ar/Ar; ~300 °C, biotite, Ar/Ar), the cooling curve of the mingling dyke is estimated. It corresponds to lowering of the temperature by 600 °C (900 °С  500 °С  300 °C) in the period from 500 (494.8±5.4) Ma to 461 (462.5±1.0) Ma. It is shown that the recent thermal events did not affect the mingling dyke located on the Tavit‐Dag site. The sequen‐ tial changes in the age of the closure of isotope systems are indicative of thinning of the crust in the study region during the post‐collisional collapse of the orogenic structure. According to the geological and thermochronological data, the mingling dykes on the Tavit‐Dag site were moved from the deep crust (~27 km) to a more shallow level (10 km) at a rate of about 0.5 km per 1.0 Ma. This process lasted for about 32 Ma, and the temperature was decreasing by 18.6 °С per 1.0 Ma.
311-330 1193
Abstract
The paper reports on studies of the Preobrazhensky gabbro‐granitoid intrusion, East Kazakhstan, com‐ posed of the rocks that belong to four phases of intrusion, from quartz monzonites and gabbroids to granite‐ leucogranites. Specific relationships between basite and granitoid rocks are usually classified as the result of interac‐ tions and mixing of liquid magmas, i.e. magma mingling and mixing. Basite rocks are represented by a series from biotite gabbros to monzodiorites. Granitoids rocks are biotite‐amphibole granites. Porphyric granosyenites, com‐ bining the features of both granites and monzodiorites, are also involved in mingling. It is established that the primary granitoid magmas contained granosyenite/quartz‐monzonite and occurred in the lower‐medium‐crust conditions in equilibrium with the garnet‐rich restite enriched with plagioclase. Monzodiorites formed during fractionation of the parent gabbroid magma that originated from the enriched mantle source. We propose a magma interaction model describing penetration of the basite magma into the lower horizons of the granitoid source, which ceased below the viscoplastic horizon of granitoids. The initial interaction assumes the thermal effect of basites on the almost crystal‐ lized granitic magma and saturation of the boundary horizons of the basite magma with volatile elements, which can change the composition of the crystallizing melt from gabbroid to monzodiorite. A ‘boundary’ layer of monzodiorite melt is formed at the boundary of the gabbroid and granitoid magmas, and interacts with granitoids. Due to chemical interactions, hybrid rocks – porphyric granosyenites – are formed. The heterogeneous mixture of monzodiorites and granosyenites is more mobile in comparison with the overlying almost crystallized granites. Due to contraction frac‐ turing in the crystallized granites, the heterogeneous mixture of monzodiorites and granosyenites penetrate into the upper rock levels. Examples of the magma interaction causing the formation of mingling structures at the middle and upper crust levels can be viewed as indicative of ‘fast’, active processes of the mantle‐crust interaction, when the mantle magmas actively drain the lithosphere and melt the substance of the lower‐middle crust. An important role is played by the temperature gradient in the sublithospheric mantle. It directly affects the degree of its melting and the volumes of basite magmas. Nonetheless, the permeability of the lithosphere is also important – the above‐described scenario is possible if the lithosphere is either thin or easily permeable due to the development of strike‐slip and extension fractures. In the Late Paleozoic, the territory of East Kazakhstan was part of the Altai collision system of hercinides. The late stages of its evolution (300–280 Ma) were accompanied by large‐scale mantle and crustal magma‐ tism corresponding to the formation of the Late Palaeozoic large igneous province related to the activity of the Tarim mantle plume. The influence of the mantle plume on the lithospheric mantle led to an increase in the temperature gradient, and the lithosphere weakened by shear movements of the collapsing orogenic structure was permeable to mantle magmas, which caused the processes of mantle‐crustal interaction.
331-345 1108
Abstract

We present the results of geological, petro‐geochemical and mineralogical studies of synplutonic intrusive formations in the Chelyabinsk granitoid massif, South Urals. Numerous synplutonic intrusions in the study area are in early phases, composed of quartz diorites and granodiorites of the Late Devonian – Early Carboniferous. Such intru‐ sions are represented by a bimodal series of rocks from gabbro‐diorite to plagioleic granite. Both the mafic and salic members of the series form separate independent dykes and, jointly, compose the dyke bodies of complex structures. With respect to the relationships with host rocks, two types of the studied dykes are distinguished: (1) ‘classical’ synplutonic dykes with monolithic bodies that are split along strike by the enclosing granodiorite into separate frag‐ ments; and (2) ‘post‐granite’ dykes that clearly break through the host quartz diorites and granodiorites that are older that the dykes, but show similar isotope ages: the U‐Pb‐Shrimp ages of zircon in the samples taken from the dyke and the host quartz diorite are 362±4 и 358±5 Ma, respectively. The first group includes the dyke of melanocratic diorite, the second – granitoid dykes and dykes of gabbro‐diorites and diorites. The intrusion of acid rocks preceded the basites and was completed after their formation. As a result of the nearly simultaneous intrusion of both, the dykes of complex structures were formed. The material compositions of mafic rocks in these two groups are significantly dif‐ ferent. The ‘post‐granite’ dioritoids are moderately alkaline. Melanodiorite in the synplutonic dyke belongs to normal alkaline rocks. It has a very high content of MgO (12.5 mass %) and is sharply enriched with chromium (~700 ppm vs. 100–350 ppm in the ‘post‐granite’ dykes). It is thus closer to sanukitoids. The acid ‘post‐granite’ dykes vary in compo‐ sition from plagoleic granite and adamellite to tonalite. They are normal‐alkaline. Their chemical compositions often do not correspond to cotectic ones. The dioritoids have nearly zero values of ɛNd (from +1 to –2), and the values of (87Sr/86Sr)I vary from 0.70485 to 0.70571. The granitoids are typically characterized by negative values of ɛNd (from –2 to –5) and, generally, more radiogenic strontium ((87Sr/86Sr)i=0.70517–0.70567). The established isotopic com‐ positions of Nd and Sr in the synplutonic dykes of the Chelyabinsk Massif give evidence of different sources for the coexisting salic and mafic melts, but do not fit a model of simple mixing of the two components. 

347-368 1267
Abstract
The alkaline mafic (lamprophyric) Gusinoozerskaya dyke in West Transbaikalia is composed of partially melted granite xenoliths. Among the xenoliths, two melted substrates are observed: (1) plagioclase and quartz, and (2) alkaline feldspar and quartz. Few millimeters thick microfelsite and microgranophiric rims are the products of melting around the granite xenoliths. Ultra‐acid glass is observed in the inner parts of the xenoliths at the boundary of quartz and feldspars. A distinctive feature of the fresh melts (regardless of the composition of the protolithic sub‐ strate) is an increased content of potassium with K2O/Na2O≥2. Having compared the compositions of the products of contact melting with the experimental data, we conclude that melting took place in the presence of alkaline‐chloride and/or alkaline‐carbonic fluid released from the crystallizing host alkaline‐basic magma. The probable geotectonic conditions for the occurrence of ultrapotassic acid magmas are estimated.
369-384 1284
Abstract
Our study investigates a possibility of using isotope ratios of U‐Th‐Pb system in zircon analysis by the LA‐ICP‐MS technique and monitoring of precision, convergence and accuracy. New U‐Pb isotope‐geochronological data has been obtained for the salic and mafic members of the bimodal Late Paleozoic series of subparallel dykes in the central part of the Western Transbaikalia. It is shown that a series of subparallel dykes (290–280 Ma) gives evi‐ dence of extension of the continental crust at the final stage of the Late Paleozoic granitoid magmatism. Similar ages of zircons in the salic and mafic subvolcanic rocks confirm the geological indicators of the coexistence and interactions between the magmas of contrasting compositions.
385-403 1113
Abstract
A new numerical model has been developed that makes it possible to describe the process of formation of a dyke of a combined composition on the basis of the dynamics of a viscous compressible fluid. The numerical thermo‐mechanical model shows the processes of magma mingling and taking into account multiphase interaction of melts which are different in composition and properties. The models suggest a mechanism for uplifting of high‐density mafic enclaves in a chamber/dyke filled with salic magma by gravitational floating in the enclosing gran‐ ite magma that has been cooled and lost volatile components. The performed simulation shows that the main parame‐ ter controlling the shape and size of the ascending bodies is the difference in densities. The viscosity contrast determines whether interpenetration and hybridization of magmas occur. The limiting ratio of felsic material in the mix‐ ture, which is capable of uplifting denser mafic enclaves, is estimated. The duration of melt uplifting in combined dykes is estimated with respect to the viscosity parameters. At a typical rate of 2–3 km per year, it amounts to almost 12 months.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)