Preview

Геодинамика и тектонофизика

Расширенный поиск

ТЕРМОХРОНОЛОГИЯ МИНГЛИНГ‐ДАЕК ЗАПАДНОГО САНГИЛЕНА (ЮГО‐ВОСТОЧНАЯ ТУВА): СВИДЕТЕЛЬСТВА РАЗВАЛА КОЛЛИЗИОННОЙ СИСТЕМЫ НА СЕВЕРО‐ЗАПАДНОЙ ОКРАИНЕ ТУВИНО‐МОНГОЛЬСКОГО МАССИВА

https://doi.org/10.5800/GT-2017-8-2-0242

Полный текст:

Аннотация

В пределах Западного Сангилена (Юго‐Восточная Тува) обнажены метаморфические и магматические комплексы ранних каледонид, относящихся к периоду длительных коллизионных и постколлизионных событий на северо‐западной окраине Тувино‐Монгольского массива. Эволюция орогенных структур в пределах Западного Сангилена может служить примером развала складчатых сооружений при смене режимов сжатия и транспрессии (период коллизии) режимом внутри‐ и окраинно‐континентального трансформно‐сдвигового растяжения (постколлизионный период). Существуют многочисленные геологические свидетельства, указывающие на происходившие при этом изменения в кинематике и характере деформаций, а также в условиях метаморфизма и магматизма региона. Однако данных, прямо подтверждающих утонение земной коры в процессе развала коллизионной орогенной структуры, до настоящего времени не было. В качестве индикаторов этих событий на Западном Сангилене могут выступать комплексы комбинированных даек, широко распространенные в междуречье рек Эрзин и Нарын и на правобережье реки Эрзин. Наиболее представительным объектом является комбинированная базит‐гранитная дайка у подножия г. Тавыт‐Даг, положение которой контролируется системой трещинных нарушений сдвигового генезиса. Термохронологические исследования пород минглинга показали различный возраст закрытия изотопных систем: 494.8±5.4 млн лет (U/Pb, циркон, базиты), 489.7±7 млн лет (U/Pb, циркон, гранитоиды), 471.2±1.9 млн лет (Ar/Ar, амфибол, базиты) и 462.5±1 млн лет (Ar/Ar, биотит, базиты). С учетом параметров закрытия изотопных систем (~800–900 °С, циркон, U/Pb; ~500 °С, амфибол, Ar/Ar; ~300 °С, биотит, Ar/Ar) оценена кривая остывания минглинг‐дайки. Она отвечает понижению температур на 600 °С (900 °С  500 °С  300 °С) в период с 500 (494.8±5.4) до 461 (462.5±1) млн лет. Показано, что поздние термальные события не затронули минглинг‐дайку участка Тавыт‐Даг. Последовательное изменение возраста закрытия изотопных систем отражает утонение земной коры в регионе в процессе постколлизионного развала орогенной структуры. На основе геологических и термохронологических данных показано, что выведение минглинг‐дайки участка Тавыт‐Даг с глубинных уровней земной коры (~27 км) на уровень, отвечающий 10 км, происходило со скоростью около 0.5 км / 1 млн лет и длилось ~32 млн лет при динамике понижения температуры 18.6 °С за 1 млн лет.

Об авторах

В. Г. Владимиров
Институт геологии и минералогии им. В.С. Соболева СО РАН Новосибирский государственный университет
Россия

канд. геол.-мин. наук, с.н.с.,

630090, Новосибирск, просп. Академика Коптюга, 3;

630090, Новосибирск, ул. Пирогова, 2



И. В. Кармышева
Институт геологии и минералогии им. В.С. Соболева СО РАН Новосибирский государственный университет
Россия

канд. геол.-мин. наук, н.с.,

630090, Новосибирск, просп. Академика Коптюга, 3;

630090, Новосибирск, ул. Пирогова, 2



В. А. Яковлев
Институт геологии и минералогии им. В.С. Соболева СО РАН Новосибирский государственный университет
Россия

магистрант, лаборант,

630090, Новосибирск, просп. Академика Коптюга, 3;

630090, Новосибирск, ул. Пирогова, 2



А. В. Травин
Институт геологии и минералогии им. В.С. Соболева СО РАН; Новосибирский государственный университет; Томский государственный университет
Россия

докт. геол.-мин. наук,

630090, Новосибирск, просп. Академика Коптюга, 3;

630090, Новосибирск, ул. Пирогова, 2;

634050, Томск, просп. Ленина, 50



А. А. Цыганков
Геологический институт СО РАН Бурятский государственный университет
Россия

докт. геол.-мин. наук, директор,

670047, Улан-Удэ, ул. Сахьяновой, 6а;

670000, Улан-Удэ, ул. Смолина, 24а



Г. Н. Бурмакина
Геологический институт СО РАН
Россия

канд. геол.-мин. наук, н.с.,

670047, Улан-Удэ, ул. Сахьяновой, 6а



Список литературы

1. Barabash N.V., Vladimirov V.G., Travin A.V., Yudin D.S., 2007. 40Ar/39Ar dating of the stage of transform-shear deformation in evolution of the early Caledonides in Western Sangilen, Southeastern Tuva. Doklady Earth Sciences 414 (1), 592–598. https://doi.org/10.1134/S1028334X0704023X.

2. Berman R.G., Aranovich L.Y., 1996. Optimized standard state and solution properties of minerals: Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al2O3-TiO2-SiO2. Contributions to Mineralogy and Petrology 126 (1), 1–24. https://doi.org/10.1007/s004100050232.

3. Burmakina G.N., Tsygankov A.A., Khubanov V.B., Vladimirov V.G., Karmysheva I.V., Buyantuyev M.D., 2016. Combined dykes of Western Sangilen, SE Tuva: isotope age, composition, petrogenesis. In: Correlation of the Altaides and Uralides: magmatism, metamorphism, stratigraphy, geochronology, geodynamics and metallogeny. Proceedings of the 3rd International scientific conference. Publishing House of SB RAS, Novosibirsk, p. 35–37 (in Russian) [Бурмакина Г.Н., Цыганков А.А., Хубанов В.Б., Владимиров В.Г., Кармышева И.В., Буянтуев М.Д. Комбинированные дайки Западного Сангилена, ЮВ Тува: изотопный возраст, состав, петрогенезис // Корреляция алтаид и уралид: магматизм, метаморфизм, стратиграфия, геохронология, геодинамика и металлогения: Материалы Третьей международной научной конференции. Новосибирск: Изд-во СО РАН, 2016. C. 35–37].

4. Izokh A.E., Kargopolov S.A., Shelepaev R.A., Travin V.A., Egorova V.V., 2001b. Basic magmatism at the Cambrian–Ordovician stage of evolution of the Altai-Sayan folded area and its influence on high-temperature low-pressure metamorphism. In: Urgent Problems of Geology and Mineralgeny in Southern Siberia. Proceedings of the Conference. IGM SB RAS, Novosibirsk, p. 68–72 (in Russian) [Изох А.Э., Каргополов С.А., Шелепаев Р.А., Травин А.В.,

5. Егорова В.В. Базитовый магматизм кембро-ордовикского этапа Алтае-Саянской складчатой области и связь с ним метаморфизма высоких температур и низких давлений // Актуальные вопросы геологии и минерагении юга Сибири: Материалы научно-практической конференции. Новосибирск: Изд-во ИГиМ СО РАН, 2001. С. 68–72].

6. Izokh A.E., Polyakov G.V., Mal'kovets V.G., Shelepaev R.A., Travin A.V., Litasov Yu.D., Gibsher A.A., 2001a. The Late Ordovician age of camptonites from the Agardag Complex of Southeastern Tuva as an indicator of the plume-related magmatism during collision processes. Doklady Earth Sciences 379 (5), 511–514.

7. Kargopolov S.A., 1991. Metamorphism of the Mugur zonal complex (South-Eastern Tuva). Geologiya i Geofizika (Russian Geology and Geophysics) 32 (3), 109–119 (in Russian) [Каргополов С.А. Метаморфизм мугурского зонального комплекса (Юго-Восточная Тува) // Геология и геофизика. 1991. Т. 32. № 3. С. 109–119].

8. Karmysheva I.V., Vladimirov V.G., Vladimirov A.G., 2017. Synkinematic granitoid magmatism of Western Sangilen, South-East Tuva. Petrology 25 (1), 87–113. https://doi.org/10.1134/S0869591117010040.

9. Karmysheva I.V., Vladimirov V.G., Vladimirov A.G., Shelepaev R.A., Yakovlev V.A., Vasyukova E.A., 2015. Tectonic position of mingling dykes in accretion-collision system of Early Caledonides of West Sangilen (South-East Tuva, Russia). Geodinamics & Tectonophysics 6 (3), 289–310. https://doi.org/10.5800/GT-2015-6-3-0183.

10. Karmysheva I.V., Vladimirov V.G., Volkova N.I., Vladimirov A.G., Kruk N.N., 2011. Two types of high-grade metamorphism in West Sangilen (Southeast Tuva). Doklady Earth Sciences 441 (2), 230–235. https://doi.org/10.1134/S1028334X1111016X.

11. Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U–Pb dating of zircons from PZ3–MZ igneous complexes of Transbaikalia by sector-field mass spectrometry with laser sampling: technique and comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.

12. Kozakov I.K., Kotov A.B., Sal'nikova E.B., Bibikova E.V., Kovach V.P., Kirnozova T.I., Berezhnaya N.G., Lykhin D.A., 1999a. Metamorphic age of crystalline complexes of the Tuva-Mongolia Massif: the U-Pb geochronology of granitoids. Petrology 7 (2), 177–191.

13. Kozakov I.K., Kotov A.B., Sal'nikova E.B., Kovach V.P., Natman A., Bibikova E.V., Kirnozova T.I., Todt W., Kröner A., Yakovleva S.Z., Lebedev V.I., Sugorakova A.M., 2001. Timing of the structural evolution of metamorphic rocks in the Tuva-Mongolian Massif. Geotectonics 35 (3), 165–184.

14. Kozakov I.K., Sal’nikova E.B., Bibikova E.V., Kirnozova T.I., Kotov A.B., Kovach V.P., 1999b. Polychronous evolution of the paleozoic granitoid magmatism in the Tuva-Mongolia Massif: U-Pb geochronological data. Petrology 7 (6), 592–601.

15. Kuzmichev A.B., 2004. Tectonic History of the Tuva–Mongolian Massif: Early Baikalian, Late Baikalian, and Early Caledonian Stages. “PROBEL-2000” Publishing House, Moscow, 192 p. (in Russian) [Кузьмичев А.Б. Тектоническая история Тувино-Монгольского массива: раннебайкальский, позднебайкальский и раннекаледонский этапы. М.: «ПРОБЕЛ-2000», 2004. 192 с.].

16. Kuzmichev A.B., Bibikova E.V., Zhuravlev D.Z., 2001. Neoproterozoic (800 Ma) orogeny in the Tuva-Mongolia Massif (Siberia): island arc–continent collision at the northeast Rodinia margin. Precambrian Research 110 (1–4), 109–126. https://doi.org/10.1016/S0301-9268(01)00183-8.

17. Le Maitre R.W., Bateman P., Dudek A., Keller J., Lameyre M., Le Bas M.J., Sabine P.A., Schmid R., Sorensen H., Streckeisen A., Wooley A.R., Zanettin B., 1989. A Classification of Igneous Rocks and a Glossary of Terms. Blackwell Scientific Publications, Oxford, 206 p.

18. Lebedev V.I., Khalilov V.A., Kargopolov S.A., Vladimirov A.G., Gibsher A.S., 1991. The U-Pb age of high-temperature metamorphism in Sangilen (Southeastern Tuva). Doklady AN SSSR 320 (3), 682–686 (in Russian) [Лебедев В.И., Халилов В.А., Каргополов С.А., Владимиров А.Г., Гибшер А.С. U-Pb возраст высокотемпературного метаморфизма Сангилена (Юго-Восточная Тува) // Доклады АН СССР. 1991. Т. 320. № 3. С. 682–686].

19. Mongush A.A., Gusev N.I., Druzhkova E.K., 2014. The first data on the U-Pb age of plagiogranites of the Chon-Sair ophiolite massif (Southern Tuva) – evidence of the Early Ordovician phase of ophiolitie genesis? In: Geology and Mineral Resources of Siberia. Materials of the 1st Scientific-Practical Conference. Vol. 1. SNIIGGiMS, Novosibirsk, p. 105–109 (in Russian) [Монгуш А.А., Гусев Н.И., Дружкова Е.К. Первые данные о U-Pb возрасте плагиогранитов Чон-Саирского офиолитового массива (Южная Тува) – свидетельство раннеордовикского этапа офиолитогенеза? // Геология и минерально-сырьевые ресурсы Сибири: Материалы 1-й научно-практической конференции. Новосибирск: СНИИГГиМС, 2014. Т. 1. С. 105–109].

20. Petrographic Code of Russia, 2009. Magmatic, Metamorphic, Metasomatic, and Impact Formations. VSEGEI Press, Saint-Petersburg, 200 p. (in Russian) [Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. Санкт-Петербург: Издательство ВСЕГЕИ, 2008. 200 с.].

21. Petrova A.Yu., 2001. The Rb-Sr Isotope System of Metamorphic and Magmatic Rocks of Western Sangilen (SouthEastern Tuva). Author’s Abstract of PhD Thesis (Candidate of Geology and Mineralogy). IMGRE, Moscow, 26 p. (in Russian) [Петрова А.Ю. Rb-Sr изотопная система метаморфических и магматических пород Западного Сангилена (Юго-Восточная Тува): Автореф. дис. … канд. геол.-мин. наук. М.: ИМГРЭ, 2001. 26 с.].

22. Petrova A.Yu., Kostitsyn Yu.A., 1997. Age of high-gradient metamorphism and granite magmatism in the Western Sangilen. Geochemistry International 35 (3), 295–298.

23. Petrova A.Yu., Kostitsyn Yu.A., 2001. Comparison of the U–Pb and Rb–Sr ages of granitoids from the western Sangilen (southeastern Tuva): polemic review of published data. In: Isotopic dating of geologic processes: new methods and results. Abstracts of All-Russian Conference on Isotope Geochronology. Moscow, p. 261–264 (in Russian) [Петрова А.Ю., Костицын Ю.А. Сравнение U-Pb и Rb-Sr возрастов гранитоидов Западного Сангилена (Юго-Восточная Тува): полемический пересмотр опубликованных данных // Изотопное датирование геологических процессов: новые методы и результаты: Тезисы докладов Всероссийской конференции по изотопной геохронологии. М., 2001. С. 261–264].

24. Pfänder J., Jochum K.P., Todt W., Kröner A., 1999. Relationships between the mantle, lower crust and upper crust within the Agardagh-Tes Chem Ophiolite, Central Asia: evidence from petrologic, trace element, and isotopic data. Ofioliti 24 (1b), 151–152.

25. Travin A.V., Kargopolov S.A., Lepezin G.G., Ponomarchuk V.A., Yudin D.S., 2006. The age and thermochronological reconstructions of a polymetamorphic complex in the western Sangilen, southeastern Tuva. In: Isotopic dating of ore formation, magmatism, sedimentation, and metamorphism processes. Proceedings of the Third Russian Conference on isotope geochronology. Vol. 2. GEOS, Moscow, p. 350–355 (in Russian) [Травин А.В., Каргополов С.А., Лепезин Г.Г., Пономарчук В.А., Юдин Д.С. Возраст и термохронологические реконструкции полиметаморфического комплекса Западного Сангилена (Юго-Восточная Тува) // Изотопное датирование процессов рудообразования, магматизма, осадконакопления и метаморфизма: Материалы III Российской конференции по изотопной геохронологии. М.: ГЕОС, 2006. Т. 2. С. 350–355.

26. Udin D., Travin A.V., Vladimirov V.G., Prostyakov K., Barabach N.V., 2002. Age spectra of biotite indicator of deformation rate: evidence from microchemical, structural, step-heating and laser 40Ar/39Ar analyses. Geochimica et Cosmochimica Acta (Special Supplement “Abstracts of the 12th Annual V.M. Goldschmidt Conference”, Davos, Switzerland) 66 (15A), A791.

27. Vladimirov A.G., Kruk N.N., Vladimirov V.G., Gibsher A.S., Rudnev S.N., 2000. Synkinematic granites and collision-shear deformations in Western Sangilen (Southeastern Tuva). Geologiya i Geofizika (Russian Geology and Geophysics) 41 (3), 398–413.

28. Vladimirov V.G., Karmysheva I.V., Travin A.V., Tsygankov A.A., Burmakina G.N., Khubanov V.B., 2016a. Complexes of combined dykes as indicators of tectonic denudation and the collapse of the collision system in the caledonides of Western Sangilen (SE Tuva). In: Correlation of the Altaides and Uralides: magmatism, metamorphism, stratigraphy, geochronology, geodynamics and metallogeny. Proceedings of the 3rd International scientific conference. Publishing House of SB RAS, Novosibirsk, p. 54–55 (in Russian) [Владимиров В.Г., Кармышева И.В., Травин А.В., Цыганков А.А., Бурмакина Г.Н., Хубанов В.Б. Комплексы комбинированных даек как индикаторы тектонической денудации и развала коллизионной системы в каледонидах Западного Сангилена (ЮВ Тува) // Корреляция алтаид и уралид: магматизм, метаморфизм, стратиграфия, геохронология, геодинамика и металлогения: Материалы Третьей международной научной конференции. Новосибирск: Изд-во СО РАН, 2016. C. 54–55].

29. Vladimirov V.G., Karmysheva I.V., Yakovlev V.A., 2016b. Two groups of magmatic mingling (on the example of the Early Caledonides of Western Sangilen, South-Eastern Tuva). In: Correlation of the Altaides and Uralides: magmatism, metamorphism, stratigraphy, geochronology, geodynamics and metallogeny. Proceedings of the 3rd International scientific conference. Publishing House of SB RAS, Novosibirsk, p. 52–53 (in Russian) [Владимиров В.Г., Кармышева И.В., Яковлев В.А. Две группы магматического минглинга (на примере ранних каледонид Западного Сангилена, Юго-Восточная Тува) // Корреляция алтаид и уралид: магматизм, метаморфизм, стратиграфия, геохронология, геодинамика и металлогения: Материалы Третьей международной научной конференции. Новосибирск: Изд-во СО РАН, 2016. С. 52–53].

30. Vladimirov V.G., Vladimirov A.G., Gibsher A.S., Travin A.V., Rudnev S.N., Shemelina I.V., Barabash N.V., Savinykh Ya.V., 2005. Model of the tectonometamorphic evolution for the Sangilen block (Southeastern Tuva, Central Asia) as a reflection of the Early Caledonian accretion–collision tectogenesis. Doklady Earth Sciences 405 (8), 1159–1165.

31. Whitney D.L., Evans B.W., 2010. Abbreviations for names of rock-forming minerals. American Mineralogist. 95 (1), 185–187. https://doi.org/10.2138/am.2010.3371.


Для цитирования:


Владимиров В.Г., Кармышева И.В., Яковлев В.А., Травин А.В., Цыганков А.А., Бурмакина Г.Н. ТЕРМОХРОНОЛОГИЯ МИНГЛИНГ‐ДАЕК ЗАПАДНОГО САНГИЛЕНА (ЮГО‐ВОСТОЧНАЯ ТУВА): СВИДЕТЕЛЬСТВА РАЗВАЛА КОЛЛИЗИОННОЙ СИСТЕМЫ НА СЕВЕРО‐ЗАПАДНОЙ ОКРАИНЕ ТУВИНО‐МОНГОЛЬСКОГО МАССИВА. Геодинамика и тектонофизика. 2017;8(2):283-310. https://doi.org/10.5800/GT-2017-8-2-0242

For citation:


Vladimirov A.G., Karmysheva I.V., Yakovlev V.A., Travin A.V., Tsygankov A.A., Burmakina G.N. THERMOCHRONOLOGY OF MINGLING DYKES IN WEST SANGILEN (SOUTH‐EAST TUVA, RUSSIA): EVIDENCE OF THE COLLAPSE OF THE COLLISIONAL SYSTEM IN THE NORTH‐WESTERN EDGE OF THE TUVA‐MONGOLIA MASSIF. Geodynamics & Tectonophysics. 2017;8(2):283-310. (In Russ.) https://doi.org/10.5800/GT-2017-8-2-0242

Просмотров: 180


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)