Preview

Геодинамика и тектонофизика

Расширенный поиск
Том 8, № 2 (2017)

ПАЛЕОГЕОДИНАМИКА

217-222 491
Аннотация
Специальный выпуск журнала Geodynamics & Tectonophysics отражает современный уровень исследований минглинг-процессов, свидетельствующий о взаимодействии контрастных по составу базитовых и кислых расплавов на разноглубинных уровнях земной коры. На примере эталонных объектов алтаид и уралид рассмотрены диагностические признаки и генезис магматического и синметаморфического минглинга. На основе математического моделирования предложен механизм подъема высокоплотных базитовых включений в камере или дайке, заполненной салической магмой. Спецвыпуск предназначен для специалистов в области геологии, петрологии и геодинамики магматических процессов в земной коре, а также для преподавателей, аспирантов и студентов вузов.
223-268 243
Аннотация

В пределах Чернорудской гранулитовой зоны (Ольхонский регион, Западное Прибайкалье) изучены габбро‐пироксениты, слагающие тектонические пластины (Черноруд, Тонта), синметаморфические интрузивные тела (Улан‐Харгана), а также многочисленные дезинтегрированные будины и включения, погруженные в метаморфический матрикс. Сравнительный анализ вещественного состава габбро‐пироксенитов позволяет объединить их в единую островодужно‐толеитовую серию, для которой проведены модельные оценки состава родоначальной магмы по программе КОМАГМАТ (магнезиальный базальт: SiO2=46.0 мас. %, TiO2=0.8 мас. %, Al2O3=15.3 мас. %, ΣFeO=9.0 мас. %, MnO=0.15 мас. %, MgO=10.5 мас. %, CaO=17.0 мас. %, Na2O=1.0 мас. %, K2O=0.2 мас. %, P2O5=0.05 мас. %, сумма 100.0 %, Mg#=67.5 %). Сделан вывод, что гранулитовый метаморфизм (Р=7.7–8.6 кбар, Т=770–820 °С) обусловлен не только погружением первичных осадочно‐ вулканогенных толщ на глубину 25–28 км, но и присутствием глубинного магматического очага магнезиальных базальтов. Оценки Р‐Т параметров условий образования гранатовых пироксенитов, представляющих собой базитовые породы прикровельной фации этого очага, составляют Р=8.0–8.3 кбар, Т=900–930 °С. Петрологическими индикаторами существования глубинного базитового очага под гранулитовым слоем являются также специфические по морфологии, внутреннему строению и вещественному составу трубообразные интрузии и метаморфический магма‐минглинг. На примере массива Улан‐Харгана и габбро‐пироксенитовых тел, участвующих в строении мраморного меланжа, предложена двухстадийная петрологическая модель базитовых инъекций. Первая стадия отвечает гидроразрыву гранулитовой толщи и возникновению трубообразных или иных тел, по аналогии с кимберлитовыми трубками или подводящими к траппам каналами различной формы. Вторая стадия отвечает подъему флюидизированного остаточного щелочного расплава сквозь возникающие трубы и разрывы, бронированные зонами закалки, и, как следствие, формированию метаморфического магма‐минглинга в условиях вязких деформаций. Внедрение базитовых магм на уровень гранулитовой фации способствовало глубинному анатексису, формированию синметаморфических гиперстенсодержащих плагиогранитов (500–490 млн лет, U/Pb изотопное датирование) и высококалиевых стресс-гранитов. Спецификой Чернорудской гранулитовой зоны являются интенсивные сдвиговые вязкопластичные и хрупкопластичные деформации, сопровождавшие процессы метаморфизма, внедрения и становления габбро‐пироксенитов и анатексиса корового субстрата, что привело к фрагментации интрузивных тел и формированию особого класса тектонических структур – метаморфического магма‐минглинга. Все тектонические и магматические структуры были впоследствии «запечатаны» K‐Na синкинематическими гранитами на регрессивной стадии в условиях амфиболитовой фации метаморфизма, 470–460 млн лет (U‐Pb/Ar‐Ar изотопное датирование).

269-281 155
Аннотация
Статья посвящена вещественному исследованию даек аплитов, секущих Ошурковский базитовый массив. В нескольких телах аплитов обнаружены каплевидные включения монцонитового состава. Установлено, что они являются закристаллизованными каплями базитового расплава и имеют следы взаимодействия с вмещающим кислым расплавом. Ar‐Ar методом определен возраст аплитов (по биотиту – 114.9 млн лет) и монцонитовых включений (по амфиболу – 123.3 млн лет).
283-310 182
Аннотация
В пределах Западного Сангилена (Юго‐Восточная Тува) обнажены метаморфические и магматические комплексы ранних каледонид, относящихся к периоду длительных коллизионных и постколлизионных событий на северо‐западной окраине Тувино‐Монгольского массива. Эволюция орогенных структур в пределах Западного Сангилена может служить примером развала складчатых сооружений при смене режимов сжатия и транспрессии (период коллизии) режимом внутри‐ и окраинно‐континентального трансформно‐сдвигового растяжения (постколлизионный период). Существуют многочисленные геологические свидетельства, указывающие на происходившие при этом изменения в кинематике и характере деформаций, а также в условиях метаморфизма и магматизма региона. Однако данных, прямо подтверждающих утонение земной коры в процессе развала коллизионной орогенной структуры, до настоящего времени не было. В качестве индикаторов этих событий на Западном Сангилене могут выступать комплексы комбинированных даек, широко распространенные в междуречье рек Эрзин и Нарын и на правобережье реки Эрзин. Наиболее представительным объектом является комбинированная базит‐гранитная дайка у подножия г. Тавыт‐Даг, положение которой контролируется системой трещинных нарушений сдвигового генезиса. Термохронологические исследования пород минглинга показали различный возраст закрытия изотопных систем: 494.8±5.4 млн лет (U/Pb, циркон, базиты), 489.7±7 млн лет (U/Pb, циркон, гранитоиды), 471.2±1.9 млн лет (Ar/Ar, амфибол, базиты) и 462.5±1 млн лет (Ar/Ar, биотит, базиты). С учетом параметров закрытия изотопных систем (~800–900 °С, циркон, U/Pb; ~500 °С, амфибол, Ar/Ar; ~300 °С, биотит, Ar/Ar) оценена кривая остывания минглинг‐дайки. Она отвечает понижению температур на 600 °С (900 °С  500 °С  300 °С) в период с 500 (494.8±5.4) до 461 (462.5±1) млн лет. Показано, что поздние термальные события не затронули минглинг‐дайку участка Тавыт‐Даг. Последовательное изменение возраста закрытия изотопных систем отражает утонение земной коры в регионе в процессе постколлизионного развала орогенной структуры. На основе геологических и термохронологических данных показано, что выведение минглинг‐дайки участка Тавыт‐Даг с глубинных уровней земной коры (~27 км) на уровень, отвечающий 10 км, происходило со скоростью около 0.5 км / 1 млн лет и длилось ~32 млн лет при динамике понижения температуры 18.6 °С за 1 млн лет.
311-330 205
Аннотация
Приведены результаты исследования Преображенского габбро‐гранитоидного интрузива в Восточном Казахстане. В его строении участвуют породы четырех интрузивных фаз, от кварцевых монцонитов и габброидов до гранит‐лейкогранитов. Между базитовыми и гранитоидными породами наблюдаются специфические взаимоотношения, которые принято классифицировать как результат взаимодействия в жидком состоянии и смешения магм (процессы минглинга и миксинга). Базитовые породы представлены рядом от биотитовых габбро до монцодиоритов, гранитоидные – биотит‐амфиболовыми гранитами. В минглинг‐взаимодействии определены также порфировидные граносиениты, сочетающие в себе черты как гранитов, так и монцодиоритов. Установлено, что первичные гранитоидные магмы имели граносиенитовый/кварцево‐монцонитовый состав и были сформированы в нижне‐среднекоровых условиях в равновесии с обогащенным плагиоклазом гранатсодержащим реститом. Формирование монцодиоритов происходило при фракционировании родоначальной габброидной магмы, которая произошла из обогащенного мантийного источника. Предложена модель взаимодействия магм, описывающая внедрение в нижние горизонты гранитоидного очага базитовой магмы, которая остановилась под вязкопластичным горизонтом гранитоидов. Начавшееся взаимодействие предполагало тепловое воздействие базитов на почти закристаллизованную гранитную магму и насыщение пограничных горизонтов базитовой магмы летучими, что могло привести к изменению состава кристаллизующегося расплава от габброидного до монцодиоритового. На границе габброидной и гранитоидной магм возник «пограничный» слой монцодиоритового расплава, который вступил во взаимодействие с гранитоидами. Результатом химического взаимодействия явилось образование гибридных пород – порфировидных граносиенитов. Сформированная гетерогенная смесь монцодиоритов и граносиенитов оказалась более подвижной по сравнению с вышележащими практически закристаллизованными гранитами, а возникновение в последних контракционных трещин обусловило проникновение и подъем гетерогенной смеси граносиенитов и монцодиоритов на более верхние уровни. Примеры взаимодействия магм с формированием минглинг‐структур на средне‐ и верхнекоровых уровнях могут рассматриваться как индикатор «быстрых», активных процессов мантийно‐корового взаимодействия, когда мантийные магмы активно дренируют литосферу и плавят вещество нижней‐средней коры. Определяющее значение имеет температурный градиент в подлитосферной мантии, который напрямую влияет на степени ее плавления и объемы базитовых магм, однако немаловажную роль играет и проницаемость литосферы: для реализации рассмотренного сценария литосфера должна быть либо маломощна, либо хорошо проницаема вследствие сдвигово‐раздвиговых движений. Территория Восточного Казахстана в позднем палеозое являлась частью Алтайской коллизионной системы герцинид, поздние стадии эволюции которой (300–280 млн лет назад) сопровождались проявлением масштабного мантийного и корового магматизма, отвечающего формированию поднепалеозойской крупной изверженной провинции, связанной с активностью Таримского мантийного плюма. Воздействие мантийного плюма на литосферную мантию привело к повышению температурного градиента, а ослабленная сдвиговыми движениями литосфера коллапсирующего орогенного сооружения оказалась проницаемой для мантийных магм, что вызвало процессы мантийно‐корового взаимодействия.
331-345 197
Аннотация
Приводятся результаты геологического, петролого‐геохимического и минералогического изучения синплутонических интрузивных образований в Челябинском гранитоидном массиве на Южном Урале. Синплутонические интрузии в Челябинском массиве распространены в его ранних фазах, сложенных кварцевыми диоритами и гранодиоритами позднедевонско‐раннекаменноугольного возраста, и представлены бимодальной серией пород от габбро‐диорита до плагиолейкогранита. И мафические, и салические члены серии как слагают отдельные самостоятельные дайки, так и совместно образуют дайковые тела сложного строения. На основании взаимоотношений с вмещающими породами выделяется две группы даек: 1) «классическая» синплутоническая дайка, монолитное тело которой по простиранию разделяется на отдельные фрагменты вмещающим гранодиоритом; 2) «постгранитные» дайки, отчетливо прорывающие вмещающие кварцевые диориты и гранодиориты, более поздние по отношению к ним, но изотопно одновозрастные с ними: U‐Pb‐Shrimp возраст циркона из материала дайки и вмещающего кварцевого диорита составляет 362±4 и 358±5 млн лет соответственно. К первой группе относится дайка меланократового диорита, ко второй – гранитоидные дайки и дайки габбро‐диоритов и диоритов. Внедрение кислых пород предшествует базитам, а завершается после них, при близко‐одновременном внедрении тех и других образуются дайки сложного строения. Вещественный состав мафических пород выделенных групп существенно различен. «Постгранитные» диоритоиды относятся к умереннощелочным, а меланодиорит синплутонической дайки – к нормально‐щелочным породам. Для последнего характерны очень высокие содержания MgO (12.5 мас. %) и резкое обогащение хромом (~700 ppm против 100–350 ppm в постгранитных дайках), что сближает его с санукитоидами. Кислые постгранитные дайки по составу варьируются от плагиолейкогранита и адамеллита до тоналита и являются нормально‐щелочными. Валовый химический состав их часто не отвечает котектическому. Диоритоиды характеризуются близкими к «0» значениями ɛNd (от +1 до –2) и вариациями значений (87Sr/86Sr)i от 0.70485 до 0.70571. Для гранитоидов типичны отрицательные величины ɛNd (от –2 до –5) и, в целом, более радиогенный стронций ((87Sr/86Sr)i=0.70517–0.70567). Имеющиеся данные об изотопном составе Nd и Sr в синплутонических дайках Челябинского массива свидетельствуют о разных источниках сосуще‐ ствующих салических и мафических расплавов, но при этом не отвечают простой модели смешения двух компонентов.
347-368 201
Аннотация
Щелочно‐мафическая (лампрофировая) Гусиноозерская дайка (Западное Забайкалье) содержит гранитные ксенолиты, испытавшие частичное плавление. Среди ксенолитов выявлено два субстрата, претерпевших плавление: 1) плагиоклаз и кварц и 2) щелочной полевой шпат и кварц. Продукты плавления представляют собой микрофельзитовые и микрогранофировые оторочки вокруг гранитных ксенолитов мощностью в первые миллиметры. Во внутренних частях ксенолитов на границе кварца и полевых шпатов наблюдается ультракислое стекло. Отличительной особенностью новообразованных расплавов, независимо от состава протолитового субстрата, является их повышенная калиевость с отношением K2O/Na2O≥2. На основе сопоставления составов производных контактового плавления с экспериментальными данными показано, что плавление происходило в присутствии щелочно‐хлоридного и/или щелочно‐углекислого флюида, выделявшегося из кристаллизующейся вмещающей щелочно‐основной магмы. Оценены вероятные геотектонические условия возникновения ультракалиевых кислых магм.
369-384 184
Аннотация
Оценена возможность использования изотопных отношений U‐Th‐Pb системы при анализе цирконов методом LA‐ICP‐MS путем мониторинга прецизионности, сходимости и правильности. Получены новые U‐Pb изотопно‐геохронологические данные для салических и мафических членов бимодальной позднепалеозойской серии субпараллельных даек центральной части Западного Забайкалья. Показано, что формирование серии субпараллельных даек (290–280 млн лет назад) фиксирует условия растяжения континентальной коры на заключительном этапе позднепалеозойского гранитоидного магматизма. Близкий возраст цирконов салических и мафических субвулканитов подтверждает геологические признаки сосуществования и взаимодействия контрастных магм.
385-403 211
Аннотация
Впервые разработана численная модель, позволяющая описывать процесс формирования дайки комбинированного состава на основе динамики вязкой сжимаемой жидкости, а также численная термомеханическая модель процессов магматического минглинга, учитывающая многофазное взаимодействие разных по составу и свойствам расплавов. На основе моделирования предложен механизм подъема высокоплотных базитовых включений в камере или дайке, заполненной салической магмой, путем гравитационного всплывания во вмещающей гранитной магме, охлажденной и потерявшей летучие компоненты. Выполненное моделирование показывает, что основным параметром, контролирующим форму и размер поднимающихся тел, является разность плотностей. В свою очередь, контрастность вязкости определяет, происходит ли взаимопроникновение и гибридизация магм. Установлено предельное содержание доли кислого материала в смеси, способного транспортировать вверх более плотные базитовые включения. В зависимости от параметров вязкости оценена длительность подъема расплавов в комбинированных дайках, которая составляет около года при характерной скорости 2–3 км/год.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)