Preview

Geodynamics & Tectonophysics

Advanced search
Vol 5, No 4 (2014)
View or download the full issue PDF (Russian)

DISCUSSION

939-991 1750
Abstract

An earthquake source is characterized by two nodal planes oriented parallel to two planes of maximum shear stresses (Fig. 1, left). A rapid displacement of the shear type (in mechanical, rather than in the geological meaning) occurs along one of the planes and causes an earthquake.

The concept of plate tectonics with one of its main components, subduction zones, provides, at first sight, the unique opportunity to select one of the two nodal planes – a gently dipping plane which is parallel to the roof of the subducting oceanic plate (Fig. 1, bottom right). The other nodal plane that is steeply dipping in the opposite direction (Fig. 1, top right) seems ‘unpromising’, considering the aspect of seismicity, for two reasons. First, displacement along this plate is contrary to the general direction of oceanic plate subduction. Secondly, such displacement is directed against the direction of gravity, which is energetically disadvantageous.

However, it should be taken into account that in the stress field of the subduction zone, as in any stress field, the two above-mentioned maximum shear stresses have equal values. At the same time, it is the sub-vertical displacement that excites rapid uplifting of the seabed which causes a tsunami. Researchers who support the traditional choice of a gently dipping nodal plane have to reckon with it and therefore create complex models, such as the ‘splay fault’ model that seem most successful, though being quite complicated and controversial (Figs. 56 and 57).

In our opinion, the geological reality is more adequately refelected by the geological and geophysical model shown in Fig. 1 (right). It is based on the wide range of information and assumes that both nodal planes are equivalent and interchange in generation of strong earthquakes.

The aim of this article is to consider this model in terms of tectonophysics. For this purpose, earthquake sources indicated on (Fig. 1, right) are classified as Riedel megashears, R (bottom right) and R' (top right top), which occur in the geodynamic setting of sub-horizontal shearing (in this case, subduction of the oceanic plate) along the sub-horizontal plane (Fig. 3). This situation is one of five elementary geodynamic settings (see Fig. 2). It is similar in everything, except the position of the shearing plane, with the geodynamic setting of horizontal shearing along the vertical plane (Fig. 4). Riedel shears formed in the latter situation were subject to the most detailed studies using purpose-made devices (Fig. 5, and 6). This study gave grounds to conclude that Riedel shears, R are developed much better than shears R'.

Our experiments (Fig. 7) confirm the above conclsuion. Moreover, it is revealed that shears R', that develop poorly in samples made of wet clay (Figs. 8, 9, 12, and 13), cannot develop in a granulated medium such as a mixture of sand and solid oil (Fig. 10, 11, and 14) and do not develop in other granulated media (Fig. 17), which are similar to the block structure of the uppermost crust (Fig. 18–20). In such mediums, shears R result from joining of small echeloned tension joints. Such style of shear formation has been explained in various waysare proposed (Fig. 15–16), and the main point of the explanations is joining of small tensile fractures by means of larger shear fractures. However, our experiments with wet clay (Fig. 31–35) show that even artificially created ’Riedel shears’ show nearly a zero extension under loading followed by shearing, which casts doubt on possibile occurence ofshear fractures as such without involvement of smaller tenson joints.

While being not satisfied with the results of our experiments, we carried out numerical simulations of the evolution of Riedel shears, R and R' for different values of lithostatic pressure (which is actually impossible in experiments with equivalent materials) and angles of shearing. (See Fig. 41 for real values of lithostatic pressure and tangential stress with reference to depths of tsunamigenic earthquakes). The opinion voiced by several authors was confirmed – the effect of unequal rotation of the shears during the subsequent shearing is highly significant and therefore ‘subversive’ for shears R'. This simulation was carried out under the assumption of emerging of shears without participation of smaller tension joints (although this assumption is not consistent with the results of our experiments, see above) (Fig. 21–30). Numerical simulation was problematic for the case involving tension joints and had to bereplaced by experiments with thephysical modelwhere small tension joints were artificially created and arranged in an echelon pattern along the tracks of future shear fractures, and small joints and tracks were oriented in accordance with the orientation of the vector of principal stresses that occurred in the model made of wet clay due to shearing (Fig. 36–40).

The results of both physical and numerical modeling have led to a definite conclusion that Riedel shears R are evidently dominating over shears R' in a variety of conditions (except for the initial stages of shearing in the samples of wet clay, which, by virtue of internal connections between clay particles, gives a less adequate representation of the natural block-type geological medium than granular materials).

This conclusion is in contradiction with the well-justified model combining geological and geophysical indicators of the formation of foci of strong tsunamigenic and non-tsunamigenic earthquakes (see Fig. 1) which are identified (see above) as megashears R and R', respectively. This contradiction is eliminated if we take into account the sharp gravitational disbalance of the island arc – trench ‘tectonopair’ created by subduction. This disbalance is expressed in the contrasting relief and in contrasting gravity anomalies in this ‘tektonopair’ (Fig. 43). We assumed that nature cannot be ‘tolerant’ for a long time, and found an opposite natural reaction (mainly in the case of the Tohoku earthquake in Japan on March 11, 2011) – subsidense of the Earth surface segment adjacent to the island arc and uplift of the surface segment adjacent to the trench, accompanied by horizontal movement of the material from the arc towards the trench (Figs. 47–54, and 58). This process has a trend of declining relief contrast between the arc and the trough and inversion of the sign of gravity anomalies (Figs. 44–46). And it is the boundary between these regions of the Earth surface subsidence and uplifting, to which tsunamigenic earthquake are confined at reverse faults of the seabed surface with the raised wall facing the trough (Fig. 42). This means that the tendency to gravitational equilibrium realized the potential of forming megashears R', that develop much worse than shears R (or do not develop at all) in other natural and modelled settings.

The conclusion that foci of tsunamigenic earthquakes R' are confined to the margin between sibsiding and uplifting regions challenges the traditional concept that a tsunami is a consequence of a sharp rise in the seabed in the local uplift area. A slashing subsidence of a vast area of the seabed entails an equally sudden sharp lowering of the sea level and the retreat of the sea from the coast. Such a phenomena was observed by unlucky tourists at the Phuket island just before the Sumatra tsunami. In a similar way, a sudden uplifting of the seabed in the area adjacent to the trough causes a corresponding rise of the sea level. In such cases, masses of water, that are much more mobile than terrestrial masses, are subject to the gravitational disequilibrium, rush towards the shore and cause a tsunami (Fig. 55).

A consolidated model of tsunamigenic earthquakes resulting from the trend to restoration of the gravity equilibrium is shown in Fig. 63. According to our conclusions, it is recommended that tsunamigenic earthquakes forecasting should be based on continuous high-precision and high-frequency monitoring of GPS and gravitational field measurements and aimed at early detection of a tendency to inversion of tectonic movements and gravity anomalies in the island arc – trench ‘tectonopairs’.

Observations of the so-called seismic ‘nails’ (Figs. 59–61) should also be conducted. Seismic ‘nails’ can be interpreted as incipient Riedel megashears R', consisting of smaller tension megafractures (similar to those shown in Figs. 10, 11, 14, and 17), which are viewed as precursors of a strong earthquake.

TECTONOPHYSICS

823-861 1753
Abstract

Results of long-term experimental studies and modelling of faulting are briefly reviewed, and research methods and the-state-of-art issues are described. The article presents the main results of faulting modelling with the use of non-transparent elasto-viscous plastic and optically active models. An area of active dynamic influence of fault (AADIF) is the term introduced to characterise a fault as a 3D geological body. It is shown that AADIF's width (М) is determined by thickness of the layer wherein a fault occurs (Н), its viscosity (η) and strain rate (V). Multiple correlation equations are proposed to show relationships between AADIF's width (М), H, η and V for faults of various morphological and genetic types. The irregularity of AADIF in time and space is characterised in view of staged formation of the internal fault structure of such areas and geometric and dynamic parameters of AADIF which are changeable along the fault strike. The authors pioneered in application of the open system conception to find explanations of regularities of structure formation in AADIFs. It is shown that faulting is a synergistic process of continuous changes of structural levels of strain, which differ in manifestation of specific self-similar fractures of various scales. Such levels are changeable due to self-organization processes of fracture systems. Fracture dissipative structures (FDS) is the term introduced to describe systems of fractures that are subject to self-organization. It is proposed to consider informational entropy and fractal dimensions in order to reveal FDS in AADIF. Studied are relationships between structure formation in AADIF and accompanying processes, such as acoustic emission and terrain development above zones wherein faulting takes place. Optically active elastic models were designed to simulate the stress-and-strain state of AADIF of main standard types of fault jointing zones and their analogues in nature, and modelling results are reported in the article. A good correlation is revealed between the available seismological, structural geological and geodetic data.

 

863-891 1715
Abstract

Slow slip events along faults and fractures are reviewed. Such inter-block displacements can be recorded at various scale levels and considered as transitional from quasi-stable (creep) to dynamic slip (earthquake). Such events include seismogenic slip along faults at velocities by one to three orders lower than those in case of 'normal' earthquakes, as well as aseismic slip cases. Discovering such events facilitates better understanding of how energy accumulated during deformation of the crust is released.

Studying conditions and the evolution of transitional regimes can provide new important information on the structure and regularities of deformation in fault zones.

Data from latest publications by different authors are consolidated, and the data analysis results are presented. Over 170 slow slip events are reviewed. Based on the consolidated data and modelling results obtained by the authors, relationships between parameters of the reviewed process are established, scale relations between the events are considered, and a first-approximation analysis is conducted for impacts of geomaterial characteristics on various deformation regimes.

Low-frequency earthquake foci and slow slip sites are most typically located in zones of transition from stable creep areas to seismogenic segments of the discontinuity (Fig. 3) It can be logically supposed that in such transitional zones, the interface has specific frictional properties providing for a regime that can be termed as 'conditionally stable slip'.

The duration of slow deformation events is roughly proportional to the released seismic moment, while such a ratio is close to self-similarity in case of 'normal' earthquakes (Fig. 4). In case of slow slip, an area of the displaced section is larger by many factors than the corresponding value for an earthquake with the same seismic moment, while an average displacement amplitude along the fault is significantly smaller (Figures 5 and 6). Velocities of slip propagation along the fault strike are variable from a few hundred metres to 20–30 km/day. Slip velocities tend to decrease with scale (Fig. 7).

Various slip modes were realized in laboratory experiments with slider model. Main specific features of slow slip along faults were simulated in the laboratory conditions. Possibilities for implementation of different deformation regimes were mainly determined by structure of simulated fault gouge. At equal Coulombic strength, small variations of structural characteristics, such as granulometric composition, grain shape, presence of fluid and its viscosity, may critically impact the deformation mode (Fig. 12).

As evidenced by the data consolidated and analysed in this article, conditionally stable regimes of deformation of crustal discontinuities are a common phenomenon. Studies of such transitional deformation regimes seem promising for establishment of regularities in generation and evolution of dynamic events, such earthquakes, tectonic rock bursts, and slope events.

905-917 1189
Abstract
The article presents results of petrophysical laboratory experiments in studies of decompression phenomena associated with consequences of abrupt displacements in fault zones. Decompression was studied in cases of controlled pressure drop that caused sharp changes of porosity and permeability parameters, and impacts of such decompression were analyzed. Healing of fractured-porous medium by newly formed phases was studied. After experiments with decompression, healing of fractures and pores in silicate rock samples (3×2×2 cm, 500 °C, 100 MPa) took about 800–1000 hours, and strength of such rocks was restored to 0.6–0.7 of the original value. In nature, fracture healing is influenced by a variety of factors, such as size of discontinuities in rock masses, pressure and temperature conditions, pressure drop gradients, rock composition and saturation with fluid. Impacts of such factors are reviewed.
919-938 1632
Abstract

Results of uniaxial compression tests of rock samples in electromagnetic fields are presented. The experiments were performed in the Laboratory of Basic Physics of Strength, Institute of Continuous Media Mechanics, Ural Branch of RAS (ICMM). Deformation of samples was studied, and acoustic emission (AE) signals were recorded. During the tests, loads varied by stages. Specimens of granite from the Kainda deposit in Kyrgyzstan (similar to samples tested at the Research Station of RAS, hereafter RS RAS) were subject to electric pulses at specified levels of compression load. The electric pulses supply was galvanic; two graphite electrodes were fixed at opposite sides of each specimen. The multichannel Amsy-5 Vallen System was used to record AE signals in the six-channel mode, which provided for determination of spatial locations of AE sources. Strain of the specimens was studied with application of original methods of strain computation based on analyses of optical images of deformed specimen surfaces in LaVISION Strain Master System.

Acoustic emission experiment data were interpreted on the basis of analyses of the AE activity in time, i.e. the number of AE events per second, and analyses of signals’ energy and AE sources’ locations, i.e. defects.

The experiment was conducted at ICMM with the use of the set of equipment with advanced diagnostic capabilities (as compared to earlier experiments described in [Zakupin et al., 2006a, 2006b; Bogomolov et al., 2004]). It can provide new information on properties of acoustic emission and deformation responses of loaded rock specimens to external electric pulses.

The research task also included verification of reproducibility of the effect (AE activity) when fracturing rates responded to electrical pulses, which was revealed earlier in studies conducted at RS RAS. In terms of the principle of randomization, such verification is methodologically significant as new effects, i.e. physical laws, can be considered fully indubitable if they prove stable when some parameters of the experiment are changed. Parameters may be arbitrarily modified within a small range, and randomization is thus another common statistical significance criterion for sample sets obtained at the same conditions. At ICMM, the experiments were conducted in compliance with the principle of randomization [Bogomolov et al., 2011]. In this respect, the material of specimens, loading conditions and characteristics of the electrical pulses source were similar to those in the experiments at RS RAS.

As evidenced by the experiments, during electromagnetic field stimulation, the AE activity is manyfold higher than the background activity before the impact. This supports the research results reviewed in [Bogomolov et al., 2011] concerning the AE activity increment of 20 % due to electric pulses in the field twice less strong than that in our experiments at ICMM.

The AE energy distribution analysis shows that cumulative distributions of the number of AE signals vs energy (i.e. the number of AE signals which energy exceeds a specified threshold value) are power-behaved. This is equivalent to the linear plot of distribution in log units of energy and relative events number, similarly to the case of Gutenberg–Richter law for earthquakes. It is noted that for the logarithmic graphs of distribution by energy, angular coefficients (b-factors) are somewhat different in the period of electric impact and in no-impact periods, which shows that the ratio of AE signals with higher energy indicators is increased in case of external impacts. Such a difference is most evident at the near-critical load when compression amounts to 0.94 fracturing stress value.

According to data from the AE source location system, it is revealed that impacts of the electric field are accompanied by redistribution of AE sources through the specimen volume when compression is below 0.9 maximum stress value, which corresponds to the stage of diffusive accumulation of defects. The location system can be effectively applied when events with high amplitudes are accumulated in sufficient number. In this regard, clustering of AE sources (defects) in the area of a future fault was recorded only during the measuring test when the AE activity was quite high at the constant load.

As shown by data from the optical diagnostics set of equipment, LаVision Strain Master System, deformation of a specimen takes place in a non-uniform pattern over its surface, which is manifested as consecutively propagating waves of localized strain. This conclusion contributes to the research results obtained earlier for rock samples under tension and compression [Panteleev et al., 2013b, 2013c, 2013d]. Localized axial strain waves and localized radial strain waves (when material particles move in the direction perpendicular to the compression direction) are concurrently observed. Such localized strain waves are ‘slow’ – they propagate at velocities that are by six or seven orders lower than the intrinsic velocity of sound propagation in the material. This observation correlates with the research results obtained earlier in studies of strain localization forms in the course of rock deformation [Zuev, 2011; Zuev et al., 2012].

When the loaded specimen is impacted by the electromagnetic field, maximum strain values are slightly decreased in comparison with those in the ordinary case (when only compressive load is applied). This trend seems to be a specific feature of changes in localization of deformation in the loaded rock samples impacted by electric pulses. Besides, the experiments demonstrate that a source of macro-destruction can be induced by the influence of an external electromagnetic field, and the growth of a nucleus of such source can be stabilized during the impact. The above conclusions correlate with the statistical model of a solid body with defects which is developed in ICMM [Panteleev et al., 2011, 2012, 2013a].

RECENT GEODYNAMICS

893-904 1404
Abstract

Assessment of long-term seismic hazard is critically dependent on the behavior of tail of the distribution function of rare strongest earthquakes. Analyses of empirical data cannot however yield the credible solution of this problem because the instrumental catalogs of earthquake are available only for a rather short time intervals, and the uncertainty in estimations of magnitude of paleoearthquakes is high. From the available data, it was possible only to propose a number of alternative models characterizing the distribution of rare strongest earthquakes. There are the following models: the model based on the
Guttenberg – Richter law suggested to be valid until a maximum possible seismic event (Мmах), models of 'bend down' of earthquake recurrence curve, and the characteristic earthquakes model. We discuss these models from the general physical concepts supported by the theory of extreme values (with reference to the generalized extreme value (GEV) distribution and the generalized Pareto distribution (GPD) and the multiplicative cascade model of seismic regime. In terms of the multiplicative cascade model, seismic regime is treated as a large number of episodes of avalanche-type relaxation of metastable states which take place in a set of metastable sub-systems.

The model of magnitude-unlimited continuation of the Guttenberg – Richter law is invalid from the physical point of view because it corresponds to an infinite mean value of seismic energy and infinite capacity of the process generating seismicity. A model of an abrupt cut of this law by a maximum possible event, Мmах is not fully logical either.

A model with the 'bend-down' of earthquake recurrence curve can ensure both continuity of the distribution law and finiteness of seismic energy value. Results of studies with the use of the theory of extreme values provide a convincing support to the model of 'bend-down' of earthquakes’ recurrence curve. Moreover they testify also that the 'bend-down' is described by the finite distribution law, i.e. the bend-down occurs more efficiently than it is envisaged in the commonly used model developed by Y. Kagan (which treats the bend-dawn as an exponential decay law). However, despite the finiteness of the distribution law, density of magnitudes decline quite slowly in the area close to the maximum possible Мmах event as (Мmах – M)n, where n varies in the range between 4 and 6 in the majority of cases. As a result Мmах value can be estimated only with a large error. In rare cases, if the space-and-time area under study contains higher number of strongest earthquakes, the empirical distribution law becomes close to the exponential law; in this case n value is quite high, and Мmах values becomes unstable and tend to infinite growth.

In our study, the distribution law of strongest earthquakes was investigated by the methods based on the extreme values theory (world data and several regional catalogues were examined), and the results of calculation do not reveal cases of  occurrence of characteristic events. However, such a seismic regime was revealed in a number of cases from paleoseismicity data and from some instrumental regional catalogues. Conditions providing for the occurrence of characteristic earthquakes are studied here using the multiplicative cascade model. According to [Rodkin, 2011], this model provides the simulation of all known regularities of seismic regime, such as a decrease in b-value in the vicinity of strong earthquakes, development of aftershock power cascade, and existence of seismic cycle and foreshock activity. This article considers an extension of the cascade model by adding of non-linear members in the kinetic cascade equation in order to describe effects of the 'bend-down' of the earthquake recurrence curve and the characteristic earthquakes occurrence. It is shown that in terms of the multiplicative cascade model, the occurrence of characteristic earthquakes is connected with development of the nonlinear positive feedback between the size of the current rupture zone and the rate of its further growth.

The modelling results are compared with data on seismicity of the South-Eastern Asia, which suggest that the regime providing the occurrence of characteristic earthquakes appears to be typical of the seismic regime of subduction zones (while it is not observed outside such zones). It is concluded that the non-linear positive feedback that controls the possibility of occurrence of characteristic earthquakes may be caused with the presence of deep fluids of increased concentration in the subduction zones.

 

PALEOGEODYNAMICS

993–1032 1893
Abstract
Biostratigraphic and lithofacial studies of sediments in the Tankhoi Tertiary field, which evolution reflects transformations of the terrain in the Baikal region at the Oligocene-Miocene, Early-Middle Miocene, Miocene-Pliocene and Early-Late Pliocene transitions. The main part of the field is composed of clastic molassoids formed during 'early orogen' stage in the coastal part of an extensive paleobasin with a slow water current and in shallow lakes of the Mishikha-Klyuevka and Osinovka river paleobasins that formed, respectively, at the Oligocene-Miocene and Early-Middle Miocene boundaries. In the Miocene, as suggested by analyses of malacofauna and diatoms, South Baikal was a major, quite deep paleolake. These water bodies were related in the Miocene as evidenced by the partial similarity of diatom species found in South Baikal and the Tunka valley, as well as the presence of similar endemic fauna species in the sediments. Accumulated coarse, mainly proluvial-alluvial deposits are indicators of the tectonic activity that resulted in a dramatic ‘late orogen’ increase of contrasting features of the regional terrain.
1033-1044 1310
Abstract
Based on Helmholtz’s free energy, an equation of state of iron (bcc-Fe) is constructed with simultaneous optimization of ultrasonic, X-ray diffraction, dilatometric, and thermochemical measurements in the temperature range from 100 K to the melting points and pressures up to 15 GPa. Calculated thermodynamic functions of bcc-Fe are in good agreement with the reference data and experimental measurements at room pressure, as well as with P–V–T measurements at temperatures up to 773 K and pressures up to 16 GPa. The calculated thermodynamic properties of bcc-Fe (x, a, S, CP, CV, KT, KSK', GT,P) are tabulated up to 1811 K and 15 GPa. The calculated P–V–T relations for bcc-Fe can be used to calculate pressures at given temperatures and volumes.
1045–1058 2133
Abstract

Paleomagnetic data are the priority source of information for global paleotectonic reconstructions representing horizontal movements of the crustal blocks. Upon receipt of new paleomagnetic data, kinematic models of the East European platform in the Paleozoic are regularly revised and improved. The article presents results of the paleomagnetic study of sedimentary gray-colored and red beds of the Silurian and Lower Devonian sequences located in the Dniester river basin, Podolia region, SW Ukraine. The study covered 17 outcrops that are stratigraphically correlated with the Wenlock, Ludlow, Pridoli states of the Sillurian and the Lochkovian stage of the Devon. Over 400 samples of grey limestone, argillite, dolomite, red limestone and sandstone were analyzed, and two components of natural remnant magnetization (NRM) were revealed. The first component with SSW declination and negative inclination is revealed in the majority of the samples during AF- and T-magnetic cleaning. Its pole positions, that are calculated separately for each series, are trending to the Permian segment of the apparent polar wander path (APWP) published by Torsvik et al. [2012] for Baltica / Stable Europe. Considering its chemical origin, this NRM component is related to formation of authigenic minerals due to rock remagnetization. The second component is revealed only in some samples taken from the red beds (during thermal demagnetization in the range of unblocking temperatures from 590 to 690 °С) and in few samples of grey limestone (in AF fields from 30 to 70 mT or in the range of unblocking temperatures from 300 to 460 °С). This component has SW declination and positive inclination, goes to the origin of coordinates of the diagrams, and has all the indicators of primary magnetization of sediments. Calculated positions of the poles (0 ºS and 329 ºE for grey limestone of the Tiverskaya series, 2.3 °S and 338.4 °E for red beds of the Dniestrovskaya series, etc.) are well correlated with the Devonian segments of APWP for Baltica / Stable Europe. The same is true for the Silurian poles. The new results suggest that in the Ludlow, the East European platform was located at the near-equatorial latitudes of the Southern Hemisphere, and in the Pridoli, it moved to the north towards the equatorial latitudes of the Southern Hemisphere. Later on, the drifting mode was changed, and the platform moved to the south. In the Lochkovian, its position was stabilized at the equatorial latitudes of the Southern Hemisphere. Drifting of the platform can be described by counterclockwise rotation by 16° around the Euler pole (Φ=34 °S, Λ=247 °E).

 

1059–1075 1658
Abstract

In terms of tectonics, the Sea of Okhotsk (Fig.1) is the epi-Mesozoic Okhotsk plate comprising the heterogeneous basement that is mainly pre-Cenozoic (the lower structural stage) and the sedimentary cover that is mainly represented by the Paleogenic-Neogenic-Quaternary deposits with the Upper Cretaceous sedimentary rocks observed locally without a visible hiatus (the upper structural stage).

Results of tectonic zoning of the sedimentary cover based on  lithophysical indicators (Fig. 2) are represented in the format of maps showing lithophysical complexes (LC) within the limits of four regional seismo-stratigraphic complexes/structural layers (RSSC I-IV) corresponding to the following time intervals: the pre-Oligocene К2-P1-2 (RSSC I), the Oligocene – Lower Miocene P3-N11 (RSSC II), the Lower-Mid Miocene N11-2 (RSSC III), and the Upper Miocene – Pliocene N13-N2 (RSSC IV). Diverse lithological-facies associations composing the RSSCs are grouped into the following lithophysical complexes (LC): 1 - coal-bearing silty-clayey-sandy terrigenous, 2 - sandy-silty-clayey terrigenous, 3 - silty-clayey-siliceous, and 4 - sandy-silty-clayey volcanic [Sergeyev, 2006].

Tectonic zoning of the sedimentary cover based on structural indicators is carried out with reference to the sediment-thickness map [Sergeyev, 2006], including a significantly revised segment showing the area of the Deryugin basin [Semakin, Kochergin, 2013]. Results of such zoning are represented in the format of a structural-tectonic map (Fig. 3) showing orientations and morphology of the structural elements of the sedimentary cover, the thickness of the sedimentary cover, and amplitudes of relative uplifts and troughs.

With reference to the structural-tectonic map (see Fig 3), the structural elements of different orders are grouped by their sizes, spatial positions and orientations and thus comprise tectonic sistems (Fig. 4), structural zones (Fig. 5) that unclude relative uplifts and troughs that are considered as structural elements of smaller sizes (Fig. 6)

Tectonic zoning of the sedimentary cover based on the structural-lithophysical indicators (Fig. 7-10) is carried out with reference to the maps of the lithophysical complexes of the four regional seismo-stratigraphic complexes/structural layers (see Fig. 2) and the map of high-order structural elements in the sedimentary cover (see Fig. 6).

 

CHRONICLE

1077–1082 982
Abstract
Results of the All-Russia conference “Faulting and associated processes in the lithosphere: tectonophysical analysis” are reviewed. It was held on 11–16 August 2014 at the Institute of the Earth’s Crust, Siberian Branch of RAS in Irkutsk, Russia. Several reports were presented by invited foreign researchers.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)