THE CENOZOIC GRABEN IN THE MARGINAL SUTURE ZONE OF THE SIBERIAN CRATON: INTERIOR STRUCTURAL FEATURES AND TECTONIC STRESS RECONSTRUCTIONS
https://doi.org/10.5800/GT-2025-16-5-0845
EDN: https://elibrary.ru/ervtop
Abstract
Marginal suture zones of ancient platforms are deep-seated fault zones separating the craton from the mobile belt. Of particular interest is the Pribaikalian marginal suture of the Siberian craton, activated during the Cenozoic rifting. There is one of the youngest structures of the Baikal rift zone – the Buguldeika-Chernorud graben. The graben is formed by the Primorsky and the Tyrgan normal faults, longitudinal relative to the marginal suture. The paper deals with the study of the graben interior structure by the electrical resistivity tomography method and presents the results of tectonic stress reconstruction by different methods. The study has shown that the fault-block structure of the graben and its immediate vicinities formed largely under the northwest to southeast regional extension conditions typical for the Late Cenozoic development of the Baikal rift. Local faults corresponding to other regional dynamic settings make up no more than 26 % of the total amount.
Keywords
About the Authors
A. V. CheremnykhRussian Federation
Alexander V. Cheremnykh
128 Lermontov St, Irkutsk 664033
A. A. Bobrov
Russian Federation
128 Lermontov St, Irkutsk 664033
I. K. Dekabryov
Russian Federation
128 Lermontov St, Irkutsk 664033
A. S. Cheremnykh
Russian Federation
128 Lermontov St, Irkutsk 664033
G. A. Gridin
Russian Federation
38-1 Leninsky Ave, Moscow 119334
D. V. Pavlov
Russian Federation
38-1 Leninsky Ave, Moscow 119334
A. A. Yuriev
Russian Federation
128 Lermontov St, Irkutsk 664033
References
1. Angelier J., 1990. Inversion of the Field Data in Fault Tectonics to Obtain the Regional Stress–III. A New Rapid Direct Inversion Method by Analytical Means. Geophysical Journal International 103 (2), 363–376. https://doi.org/10.1111/j.1365-246X.1990.tb01777.x.
2. Arzhannikova A., Arzhannikov S., 2019. Morphotectonic and Paleoseismological Studies of Late Holocene Deformation Along the Primorsky Fault, Baikal Rift. Geomorphology 342, 140–149. https://doi.org/10.1016/j.geomorph.2019.06.016.
3. Arzhannikova A.V., Gofman L.E., 2000. Neotectonics in the Primorsky Fault Zone. Russian Geology and Geophysics 41 (6), 785–791.
4. Burzunova Yu.P., 2022. Reconstruction of Tectonic Stresses by Different Methods of Jointing Analysis (as the Example of the Morskoi Fault Zone in Cisbaikalia). Russian Geology and Geophysics 63 (8), 926–939. https://doi.org/10.2113/RGG20204322.
5. Cheremnykh A.S., 2016. Morphostructural and Tectonophysical Features of Strike-Slip and Extensional Fault Zones (Results of Analog Modeling). Russian Geology and Geophysics 57 (9), 1359–1370. https://doi.org/10.1016/j.rgg.2016.08.021.
6. Cheremnykh A.S., Karimova A.A., 2018. Manifestation Features of Different Rank Extension Zones in the Relief of Experimental Models and Their Natural Analogues. Proceedings of the Siberian Department of the Section of Earth Sciences of the Russian Academy of Natural Sciences: Geology, Exploration and Development of Mineral Deposits 41 (1), 79–98 (in Russian) https://doi.org/10.21285/2541-9455-2018-41-1-79-98.
7. Cheremnykh А.V., 2010. Internal Structures of Fault Zones in the Priolkhonie and Evolution of the State of Stresses of the Upper Crust of the Baikal Rift. Geodynamics & Tectonophysics 1 (3), 273–284 (in Russian) https://doi.org/10.5800/GT-2010-1-3-0021.
8. Cheremnykh А.V., 2015. Faults of the Central Baikal Region: Results of Structural-Paragenetic Analysis. Bulletin of Saint Petersburg State University. Series 7. Geology, Geography 2, 59–72 (in Russian)
9. Cheremnykh A.V., Burzunova Yu.P., Dekabryov I.K., 2020. Hierarchic Features of Stress Field in the Baikal Region: Case Study of the Buguldeika Fault Junction. Journal of Geodynamics 141–142, 101797. https://doi.org/10.1016/j.jog.2020.101797.
10. Cheremnykh A.V., Cheremnykh A.S., Bobrov A.A., 2018. Faults in the Baikal Region: Morphostructural and Structure-Genetic Features (Case Study of the Buguldeika Fault Junction). Russian Geology and Geophysics 59 (9), 1100–1108. https://doi.org/10.1016/j.rgg.2018.08.004.
11. Cheremnykh A.V., Dekabryov I.K., 2023. Tectonic Stresses in the Chersky Fault Zone (Baikal Rift System). Geodynamics & Tectonophysics 14 (5), 0722 (in Russian) https://doi.org/10.5800/GT-2023-14-5-0722.
12. Delvaux D., 1993. The TENSOR Program for Paleostress Reconstruction: Examples from the East African and the Baikal Rift Zones. Terra Nova 5 (Abstr. Suppl. 1), 216.
13. Delvaux D., Moeys R., Stapel G., Melnikov A., Ermikov V., 1995. Palaeostress Reconstruction and Geodynamics of the Baikal Region, Central Asia. Part I: Palaeozoic and Mesozoic Pre-Rift Evolution. Tectonophysics 252 (1–4), 61–101. http://doi.org/10.1016/0040-1951(95)00090-9.
14. Delvaux D., Moeys R., Stapel G., Petit C., Levi K., Miroshnichenko A., Ruzhich V., Sankov V., 1997. Paleostress Reconstruction and Geodynamics of the Baikal Region, Central Asia. Part II: Cenozoic Rifting. Tectonophysics 282 (1–4), 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2.
15. Delvaux D., Sperner B., 2003. Stress Tensor Inversion from Fault Kinematic Indicators and Focal Mechanism Data: The TENSOR Program. In: D. Nieuwland (Ed.), New Insights Into Structural Interpretation and Modelling. Geological Society of London Special Publications 212, p. 75–100.
16. Denisenko I.A., Lunina O.V., 2020. Late Quarternary Displacements Along the Sarma Segment of the Primorsky Fault Based on GPR Survey Data (Baikal Rift). Geodynamics & Tectonophysics 11 (3), 548–565 (in Russian) https://doi.org/10.5800/GT-2020-11-3-0490.
17. Donskaya T.V., 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic Granitoids. Precambrian Research 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869.
18. Fedorovsky V.S., 1997. Dome Tectonics in the Caledonian Collision System of Western Cisbaikalia. Geotectonics 31 (6), 483–497.
19. Gridin G.A., Ostapchuk A.A., Grigorieva A.V., Pavlov D.V., Cheremnykh A.V., Bobrov A.A., Dekabrev I.K., 2025. Variations in Structural, Physical and Mechanical Properties of a Tectonic Fault in the Near-Surface Zone. Izvestiya, Physics of the Solid Earth 61 (1), 45–55. https://doi.org/10.1134/S106935132570003X.
20. Ivanchenko G.N., Gorbunova E.M., Cheremnykh A.V., 2022. Some Possibilities of Lineament Analysis in Mapping Faults of Different Ranks: Case Study of the Baikal Region. Izvestiya, Atmospheric and Oceanic Physics 58 (9), 1086–1099. https://doi.org/10.1134/S0001433822090092.
21. Khmelevsky V.K., Shevnin V.A. (Eds), 1994. Electrical Resistivity Method. MSU Publishing House, Moscow, 160 p. (in Russian)
22. Kuzmin S.B., 1995. Geomorphology of the Maritime Fault Zone. Geomorphology and Paleogeography 4, 53–61 (in Russian)
23. Loke M.H., 2010. RES2DINV Ver. 3.59, Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method. Tutorial. Malaysia: Geotomo Software, 148 p.
24. Lunina O.V., Gladkov A.A., 2022. The Rupturing Phenomena in the Deltaic Deposits of Cape Rytyi on the Northwestern Shore of Lake Baikal. Russian Geology and Geophysics 63 (2), 125–136. https://doi.org/10.2113/RGG20204270.
25. Lunina O.V., Gladkov A.S., Cheremnykh A.V., 2002. Fracturing in the Primorsky Fault Zone (Baikal Rift System). Geology and Geophysics 43 (5), 446–455 (in Russian)
26. Mats V.D., Lobatskaya R.M., Khlystov O.M., 2007. Evolution of Faults in Continental Rifts: Morphotectonic Evidence from the South-Western Termination of the North Baikal Basin. Earth Science Frontiers 14 (1), 207–219. https://doi.org/10.1016/S1872-5791(07)60009-8.
27. Mazaeva O.A., Yuriev A.A., Babicheva V.A., 2023. UAV Aerial Survey in Monitoring of Coastal Geosystems in the Southern Irkutsk Amphitheatre. Geodynamics & Tectonophysics 14 (6), 0734 (in Russian) https://doi.org/10.5800/GT-2023-14-6-0734.
28. Sankov V.A., Miroshnitchenko A.I., Levi K.G., Lukhnev A.V., Melnikov A.I., Delvaux D., 1997. Cenozoic Stress Field Evolution in the Baikal Rift Zone. Bulletin du Centre de Recherches Elf Exploration Production 21 (2), 435–455.
29. Seminsky K.Zh., 2014. Specialized Mapping of Crustal Fault Zones. Part 1: Basic Theoretical Concepts and Principles. Geodynamics & Tectonophysics 5 (2), 445–467 (in Russian) https://doi.org/10.5800/GT-2014-5-2-0136.
30. Seminsky K.Zh., 2015. Specialized Mapping of Crustal Fault Zones. Part 2: Main Stages and Prospects. Geodynamics & Tectonophysics 6 (1), 1–43 (in Russian) https://doi.org/10.5800/GT-2015-6-1-0170.
31. Seminsky K.Zh., Cheremnykh A.V., 2011. Jointing Patterns and Stress Tensors in Cenozoic Sediments of the Baikal Rift: Development of the Structural-Genetic Approach. Russian Geology and Geophysics 52 (3), 353–367. https://doi.org/10.1016/j.rgg.2011.02.008.
32. Seminsky K.Zh., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R.M., Cheremnykh A.S., 2013. Interblock Zones in the Crust of the Southern Regions of East Siberia: Tectonophysical Interpretation of Geological and Geophysical Data. Geodynamics & Tectonophysics 4 (3), 203–278 (in Russian) https://doi.org/10.5800/GT-2013-4-3-0099.
33. Seminsky K.Zh., Zaripov R.M., Olenchenko V.V., 2016. Interpretation of Shallow Electrical Resistivity Images of Faults: Tectonophysical Approach. Russian Geology and Geophysics 57 (9), 1349–1358. https://doi.org/10.1016/j.rgg.2016.08.020.
34. Sherman S.I., 1977. Physical Regularities of Crustal Faulting. Nauka, Novosibirsk, 102 p. (in Russian)
35. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Buddo V.Yu., 1994. Faulting in the Lithosphere. Extension Zones. Nauka, Novosibirsk, 227 p. (in Russian)
36. Ufimtsev G.F., 1992. Morphotectonics of the Baikal Rift Zone. Novosibirsk, Nauka, 216 p. (in Russian)
37. Volkov V.V. (Ed.), 1978. Tectonic Faults of Transbaikalia. Nauka, Novosibirsk, 112 p. (in Russian)
38. Zaripov R.M., 2014. Specificity of Electrical Resistivity Tomography in Analyzing Fault Zones of Priolkhonye (Western Baikal Region). Proceedings of Irkutsk State Technical University 3 (86), 56–65 (in Russian)
Review
For citations:
Cheremnykh A.V., Bobrov A.A., Dekabryov I.K., Cheremnykh A.S., Gridin G.A., Pavlov D.V., Yuriev A.A. THE CENOZOIC GRABEN IN THE MARGINAL SUTURE ZONE OF THE SIBERIAN CRATON: INTERIOR STRUCTURAL FEATURES AND TECTONIC STRESS RECONSTRUCTIONS. Geodynamics & Tectonophysics. 2025;16(5):0845. (In Russ.) https://doi.org/10.5800/GT-2025-16-5-0845. EDN: https://elibrary.ru/ervtop