Геодинамика и тектонофизика

Расширенный поиск

Макаров Павел Васильевич

 Макаров Павел Васильевич

 профессор, доктор физ.-мат. наук

 Институт физики прочности и материаловедения, Томск, Россия



Область научных интересов - физика и механика процессов деформации гетерогенных материалов и конструкций при различных условиях нагружения.

(ResearchGate) (ORCID)


Публикации 2020–2010

  • Peryshkin A.Yu., Makarov P.V., Eremin M.O., 2014. Numerical simulation of tectonic plates motion and seismic process in central Asia. AIP Conference Proceedings 1623, 487–490.
  • Makarov P.V., Eremin M.O., Kostandov Y.A., 2014. Prefracture time of gabbro specimens in a damage accumulation model. Physical Mesomechanics 17 (3), 199–203.
  • Smolin I.Yu., Eremin M.O., Makarov P.V. Evtushenko E.P., Kulkov S.N., Buyakova S.P., 2014. Brittle porous material mesovolume structure models and simulation of their mechanical properties. AIP Conference Proceedings 1623, 595–598.
  • Kostandov Yu.A., Makarov P.V., Eremin M.O., 2014. Experimental and numerical study of quasi-brittle fracture of rocks. AIP Conference Proceedings 1623, 303–306.
  • Cherepov A.A., Eremin M.O., Makarov P.V., Peryshkin A.Yu., 2014. A possibilities of dangerous dynamic phenomena prediction in a rock mass surrounding the excavations. AIP Conference Proceedings 1623, 87–90.
  • Makarov P.V., 2014. Geomedium as a nonlinear dynamic system. An evolutionary concept of earthquake development. AIP Conference Proceedings 1623, 395–398.
  • Makarov P.V., Eremin M.O., 2013. Fracture model of brittle and quasibrittle materials and geomedia. Physical Mesomechanics 16 (3), 207–226.
  • Kostandov Yu.A., Makarov P.V., Eremin M.O., Smolin I.Yu., Shipovskii I.E., 2013. Fracture of Compressed Brittle Bodies with a Crack. International Applied Mechanics 49 (1), 95–101.
  • Makarov P.V., Eremin M.O., 2013. The numerical simulation of ceramic composites failure at axial compression. Frattura ed Integrita Strutturale 24, 127–137.
  • Makarov P.V., 2011.Resonance structure and inelastic strain and defect localization in loaded media. Physical Mesomechanics 14 (5–6), 297–307.
  • Makarov V.S., Makarov P.V., 2011. On the enumeration of Archimedean polyhedra in the Lobachevsky space. Proceedings of the Steklov Institute of Mathematics 275 (1), 90–117.  
  • Makarov P.V., 2010. Self-organized criticality of deformation and prospects for fracture prediction. Physical Mesomechanics 13 (5–6), 292–305.
  • Makarov P.V., Bakeev R.A., Peryshkin A.Y., Zhukov A.S., Ziatdinov M.K., Promakhov V.V., 2019. Modelling of the deformation and destruction of a TiNi-TiB2 metal-ceramic composite fabricated by direct laser deposition. Engineering Fracture Mechanics 222, 106712.
  • Makarov P.V., Bakeev R.A., Smolin I.Y., 2019. Modeling of Localized Inelastic Deformation at the Mesoscale with Account for the Local Lattice Curvature in the Framework of the Asymmetric Cosserat Theory. Physical Mesomechanics 22(5), 392-401.
  • Eremin M.O., Makarov P.V., 2019. Mathematical Modeling of Stress-Strain Evolution in the Rock Mass around a Mine Opening. Evaluation of the Steps of First Roof Caving at Different Thicknesses of the Main Roof. Physical Mesomechanics22(4), 287-295.
  • Smolin I.Y., Makarov P.V., Kulkov A.S., Eremin M.O., Tunda V.A., Mikushina V.A., 2018. Statistical peculiarities of the mechanical response of loaded solids at the pre-fracture stage. Procedia Structural Integrity13, 1059-1064.
  • Makarov P.V., Peryshkin A.Y., 2017. Slow motions as inelastic strain autowaves in ductile and brittle media. Physical mesomechanics 20(2), 209-221.