Preview

Геодинамика и тектонофизика

Расширенный поиск

Литасов Константин Дмитриевич

Литасов Константин Дмитриевич

доктор геол.-мин. наук, профессор РАН

Институт физики высоких давлений имени Л. Ф. Верещагина РАН, Москва, Россия

ResearchGate  ORCID


К.Д. Литасовым были обоснованы фундаментальные различия при плавлении в областях мантии Земли, содержащей Н2О, СО2 и восстановленный С–О–Н–флюид. Доказано, что плавление в системах с Н2О зависит от растворимости водорода в структуре силикатов, а плавление в системах с СО2 определяется стабильностью щелочных карбонатов и контролируется количеством Na2O и K2O в системе. Показано, что большинство солидусных кривых в системах с летучими компонентами выполаживается при давлениях выше 6–8 ГПа, создавая условия для плавления при пересечении с РТ-профилями зон субдукции и средней мантии. Сделан вывод о плавлении карбонатов субдукционных плит в переходном слое мантии, что приводит к образованию карбонатитовых диапиров, которые могут всплывать сквозь мантию по механизму «растворение-осаждение», приводить к созданию окисленных каналов в мантии и являться эффективным механизмом образования глубинных алмазов. Предложенный механизм может являться доминирующим для миграции расплавов в мантии Земли. (источник: сайт СО РАН)


Публикации 2019-2024

 

  • Ignatov M.A., Rashchenko S.V., Likhacheva A.Y., Romanenko A.V., Shatskiy A.F., Arefiev A.V., Litasov K.D., 2024. High-Pressure Structural Behavior of α-K2Ca3(CO3)4 up to 20 GPa. PHYSICS AND CHEMISTRY OF MINERALS 51(3), 30. https://doi.org/10.1007/s00269-024-01292-7
  • Selemir V.D., Brazhkin V.V., Litasov K.D., Repin P.B., Korshunov A.S., Bykov A.I., Boriskov G.V., Egorov N.I., Kudasov Yu.B., Makarov I.V., Maslov D.A., Pavlov V.N., Platonov V.V., Strelkov I.S., Surdin O.M., Kozabaranov R.V., Bochkarev A.V., Agapov A.A., Belyaeva N.A., 2024. Isentropic Compression of Solid CO2 at Megabar Pressures. JETP LETTERS 119, 860–864. https://doi.org/10.1134/S0021364024601374
  • Rashchenko S.V., Ignatov M.A., Shatskiy A.F., Arefiev A.V., Litasov K.D., 2024. Coupling Between Cation and Anion Disorder in β-K2Ca3(CO3)4. JOURNAL OF APPLIED CRYSTALLOGRAPHY 57, 665–669. https://doi.org/10.1107/S1600576724002292
  • Litasov K.D., Brazhkin V.V., Sagatov N.E., Inerbaev T.M., 2024. Equations of State of Solid CO2 Phases at Megabar Pressures. JETP LETTERS 119, 205–210. https://doi.org/10.1134/S0021364023604165
  • Vinogradova Yu.G., Shatskiy A., Arefiev A.V., Litasov K.D., 2023. The Equilibrium Boundary of the Reaction Mg3Al2Si3O12+3CO2=Al2SiO5+2SiO2+3MgCO3 at 3–6 GPa. AMERICAN MINERALOGIST https://doi.org/10.2138/am-2022-8696
  • Shatskiy A., Vinogradova Yu.G., Arefiev A.V., Litasov K.D., 2023. Revision of the CaMgSi2O6−CO2 P-T Phase Diagram at 3–6 GPa. AMERICAN MINERALOGIST https://doi.org/10.2138/am-2022-8588
  • Shatskiy A.F., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2023. The NaCl–CaCO3–MgCO3 System at 3 GPa: Implications for Mantle Solidi. RUSSIAN GEOLOGY AND GEOPHYSICS 64(8), 932–949. https://doi.org/10.2113/RGG20234587
  • Shatskiy A.F., Podborodnikov I.V., Fedoraeva A.S., Arefiev A.V., Bekhtenova A., Litasov K.D., 2023. The NaCl–CaCO3 and NaCl–MgCO3 Systems at 6 GPa: Link between Saline and Carbonatitic Diamond Forming Melts. AMERICAN MINERALOGIST 108(4), 709–718. https://doi.org/10.2138/am-2022-8403
  • Arefiev A.V., Shatskiy A.F., Bekhtenova A., Litasov K.D., 2023. Phonolite-Carbonatite Liquid Immiscibility at 3–6 GPa. MINERALS 13, 443. https://doi.org/10.3390/min13030443
  • Shatskiy A.F., Vinogradova Yu.G., Arefiev A.V., Litasov K.D., 2023. The System NaAlSi2O6‒CaMgSi2O6−CO2 at 3–6.5 GPa: Implications for CO2 Stability in the Eclogitic Suite at Depths of 100–200 km. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY 178, 22. https://doi.org/10.1007/s00410-023-01999-w
  • Semerikova A., Chanyshev A.D., Glazyrin K., Pakhomova A., Kurnosov A., Litasov K.D., Dubrovinsky L., Fedotenko T., Koemets E., Rashchenko S., 2023. Does It “Rain” Diamonds on Neptune and Uranus? ACS EARTH AND SPACE CHEMISTRY 7(3), 582–588. https://doi.org/10.1021/acsearthspacechem.2c00343
  • Sagatov N.E., Sagatova D.N., Gavryushkin P.N., Litasov K.D., 2023. New High-Pressure Structures of Transition Metal Carbonates with O3C–CO3 Orthooxalate Groups. SYMMETRY 15(2), 421. https://doi.org/10.3390/sym15020421
  • Shatskiy A.F., Bekhtenova A., Arefiev A.V., Litasov K.D., 2023. Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C. MINERALS 13(1), 82. https://doi.org/10.3390/min13010082
  • Shatskiy A.F., Arefiev A.V., Litasov K.D., 2023. Change in Carbonate Budget and Composition during Subduction below Metal Saturation Boundary. GEOSCIENCE FRONTIERS 14(1), 101463. https://doi.org/10.1016/j.gsf.2022.101463
  • Arefiev A.V., Shatskiy A.F., Bekhtenova A., Litasov K.D., 2022. Raman Study of Quench Products of Alkaline Carbonate Melt at 3 and 6 GPa: Link to the Pressure of Origin. JOURNAL OF RAMAN SPECTROSCOPY 53(12), 2110–2122. https://doi.org/10.1002/jrs.6438
  • Gavryushkin P.N., Martirosyan N.S., Rashchenko S.V., Sagatova D.N., Sagatov N.E., Semerikova A.I., Fedotenko T.V., Litasov K.D., 2022. The First Experimental Synthesis of Mg Orthocarbonate by the Reaction MgCO3+MgO=Mg2CO4 at Pressures of the Earth’s Lower Mantle. JETP LETTERS 116, 477–484. https://doi.org/10.1134/S0021364022601798
  • Arefiev A.V., Shatskiy A.F., Bekhtenova A., Litasov K.D., 2022. Quench Products of K-Cа-Mg Carbonate Melt at 3 and 6 GPa: Implications for Carbonatite Inclusions in Mantle Minerals. MINERALS 12(9), 1077. https://doi.org/10.3390/min12091077
  • Martirosyan N.S., Shatskiy A.F., Litasov K.D., Sharygin I.S., Yoshino T., 2022. Interaction of Carbonates with Peridotite Containing Iron Metal: Implications for Carbon Speciation in the Upper Mantle. LITHOS 428–429, 106817. https://doi.org/10.1016/j.lithos.2022.106817
  • Podborodnikov I.V., Shatskiy A.F., Arefiev A.V., Bekhtenova A., Litasov K.D., 2022. The systems KCl–CaCO3 and KCl–MgCO3 at 6 GPa. HIGH PRESSURE RESEARCH 42(3), 245–258. https://doi.org/10.1080/08957959.2022.2102426
  • Shatskiy A.F., Podborodnikov I.V., Arefiev A.V., Bekhtenova A., Litasov K.D., 2022. Genetic Link between Saline and Carbonatitic Mantle Fluids: The system NaCl-CaCO3-MgCO3±H2O±Fe at 6 GPa. GEOSCIENCE FRONTIERS 13(6), 101431. https://doi.org/10.1016/j.gsf.2022.101431
  • Sagatov N.E., Gavryushkin P.N., Bekker T., Litasov K.D., 2022. Ba3(BO3)2: The First Example of the Dynamic Disordering in Borate Crystal. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 24, 16437–16441 https://doi.org/10.1039/D2CP01846BShatskiy A., Podborodnikov I.V., Arefiev A.V., Bekhtenova A., Litasov K.D., 2022. The System KCl−CaCO3−MgCO3 at 6 GPa: A Link between Saline and Carbonatitic Diamond-Forming Fluids. CHEMICAL GEOLOGY 604, 120931. https://doi.org/10.1016/j.chemgeo.2022.120931
  • Barbaro A., Nestola F., Pittarello L., Ferrière L., Murri M., Litasov K.D., Christ O., Alvaro M., Chiara Domeneghetti M., 2022. Characterization of Carbon Phases in Yamato 74123 Ureilite to Constrain the Meteorite Shock History. AMERICAN MINERALOGIST 107(3), 377–384. https://doi.org/10.2138/am-2021-7856
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2022. Towards Composition of Carbonatite Melts in Peridotitic Mantle. EARTH AND PLANETARY SCIENCE LETTERS 581, 117395. https://doi.org/10.1016/j.epsl.2022.117395
  • Shatskiy A., Bekhtenova A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2022. Slab-Derived Melts Interacting with Peridotite: Toward the Origin of Diamond-Forming Melts. LITHOS 412–413, 106615. https://doi.org/10.1016/j.lithos.2022.106615
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Vinogradova Y.G., Litasov K.D., 2022. Solidus of Carbonated Phlogopite Eclogite at 3–6 GPa: Implications for Mantle Metasomatism and Ultra-High Pressure Metamorphism. GONDWANA RESEARCH 103, 188–204. https://doi.org/10.1016/j.gr.2021.10.016
  • Bekker T.B., Podborodnikov I.V., Sagatov N.E., Shatskiy A., Rashchenko S., Sagatova D.N., Davydov A., Litasov K.D., 2022. γ-BaB2O4: High-Pressure High-Temperature Polymorph of Barium Borate with Edge-Sharing BO4 Tetrahedra. INORGANIC CHEMISTRY 61(4), 2340–2350. https://doi.org/10.1021/acs.inorgchem.1c03760
  • Bekker T.B., Sagatov N.E., Podborodnikov I.V., Shatskiy A.F., Rashchenko S., Goryainov S.V., Davydov A., Litasov K.D., 2022. High-Pressure Synthesis, Electronic Properties, and Raman Spectroscopy of Barium Tetraborate BaB4O7 Polymorphs. CRYSTAL GROWTH AND DESIGN 22(5), 3405–3412. https://doi.org/10.1021/acs.cgd.2c00211
  • Shatskiy A., Bekhtenova A., Arefiev A.V., Podborodnikov I.V., Vinogradova Y.G., Rezvukhin D.I., Litasov K.D., 2022. Solidus and Melting of Carbonated Phlogopite Peridotite at 3–6.5 GPa: Implications for Mantle Metasomatism. GONDWANA RESEARCH 101, 156–174. https://doi.org/10.1016/j.gr.2021.07.023
  • Sagatova D.N., Sagatov N.E., Gavryushkin P.N., Banaev M.V., Litasov K.D., 2021. Alkali Metal (Li, Na, and K) Orthocarbonates: Stabilization of sp3-Bonded Carbon at Pressures above 20 GPa. CRYSTAL GROWTH AND DESIGN 21(12), 6744–6751. https://doi.org/10.1021/acs.cgd.1c00652
  • Sagatov N.E., Sagatova D.N., Gavryushkin P.N., Litasov K.D., 2021. Fe-N System at High Pressures and Its Relevance to the Earth's Core Composition. CRYSTAL GROWTH AND DESIGN 21(11), 6101–6109. https://doi.org/10.1021/acs.cgd.1c00432
  • Sagatov N.E., Bekker T.B., Podborodnikov I.V., Litasov K.D., 2021. First-Principles Investigation of Pressure-Induced Structural Transformations of Barium Borates in the Bao-B2O3-BaF2 System in the Range of 0–10 GPa. COMPUTATIONAL MATERIALS SCIENCE 199, 110735. https://doi.org/110735. 10.1016/j.commatsci.2021.110735
  • Rashchenko S.V., Shatskiy A.F., Ignatov M.A., Arefiev A.V., Litasov K.D., 2021. High-Pressure Synthesis and Crystal Structure of Non-Centrosymmetric K2Ca3(CO3)4. CrystEngComm 23(38), 6675–6681. https://doi.org/10.1039/d1ce00882j
  • Sagatov N.E., Abuova A.U., Sagatova D.N., Gavryushkin P.N., Abuova F.U., Litasov K.D., 2021. Phase Relations, and Mechanical and Electronic Properties of Nickel Borides, Carbides, and Nitrides From: ab Initio Calculations. RSC ADVANCES 11(53), 33781–33787. https://doi.org/10.1039/d1ra06160g
  • Barbaro A., Domeneghetti M.C., Litasov K.D., Ferrière L., Pittarello L., Christ O., Lorenzon S., Alvaro M., Nestola F., 2021. Origin of Micrometer-Sized Impact Diamonds in Ureilites by Catalytic Growth Involving Fe-Ni-Silicide: The Example of Kenna Meteorite. GEOCHIMICA ET COSMOCHIMICA ACTA 309, 286–298. https://doi.org/10.1016/j.gca.2021.06.022
  • Vinogradova Y.G., Shatskiy A.F., Litasov K.D., 2021. Thermodynamic Analysis of Reactions of CO2 Fluid with Garnet and Clinopyroxene at 3–6 GPa. GEOCHEMISTRY INTERNATIONAL 59, 851–857. https://doi.org/10.1134/S0016702921080103
  • Gavryushkin P.N., Sagatova D.N., Sagatov N., Litasov K.D., 2021. Orthocarbonates of Ca, Sr, and Ba – The Appearance of sp3-Hybridized Carbon at a Low Pressure of 5 GPa and Dynamic Stability at Ambient Pressure. ACS EARTH AND SPACE CHEMISTRY 5(8), 1948–1957. https://doi.org/10.1021/acsearthspacechem.1c00084
  • Sagatova D.N., Shatskiy A.F., Sagatov N.E., Litasov K.D., 2021. Phase Relations in CaSiO3 System up to 100 GPa and 2500 K. GEOCHEMISTRY INTERNATIONAL 59, 791–800. https://doi.org/10.1134/S0016702921080073
  • Sagatova D.N., Shatskiy A.F., Gavryushkin P.N., Sagatov N.E., Litasov K.D., 2021. Stability of Ca2CO4- Pnma against the Main Mantle Minerals from Ab Initio Computations. ACS EARTH AND SPACE CHEMISTRY 5(7), 1709–1715. https://doi.org/10.1021/acsearthspacechem.1c00065
  • Bekker T., Litasov K., Shatskiy A., Sagatov N., Podborodnikov I., Krinitsin P., 2021. Experimental and Ab Initio Investigation of the Formation of Phosphoran Olivine. ACS EARTH AND SPACE CHEMISTRY 5(6), 1373–1383. https://doi.org/10.1021/acsearthspacechem.1c00011
  • Bekhtenova A., Shatskiy A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2021. Phase Relations in Carbonate Component of Carbonatized Eclogite and Peridotite along Subduction and Continental Geotherms. GONDWANA RESEARCH 94, 186–200. https://doi.org/10.1016/j.gr.2021.02.019
  • Gavryushkin P.N., Sagatova D.N., Sagatov N., Litasov K.D., 2021. Formation of Mg-Orthocarbonate through the Reaction MgCO3+MgO=Mg2CO4 at Earth's Lower Mantle P-T Conditions. CRYSTAL GROWTH AND DESIGN 21(5), 2986–2992. https://doi.org/10.1021/acs.cgd.1c00140
  • Shatskiy A., Podborodnikov I.V., Arefiev A.V., Bekhtenova A., Vinogradova Y.G., Stepanov K.M., Litasov K.D., 2021. Pyroxene-Carbonate Reactions in the CaMgSi2O6±NaAlSi2O6+MgCO3±Na2CO3±K2CO3 System at 3–6 GPa: Implications for Partial Melting of Carbonated peridotite. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY 176, 34. https://doi.org/10.1007/s00410-021-01790-9
  • Sagatov N.E., Bazarbek A.-D.B., Inerbaev T.M., Gavryushkin P.N., Akilbekov A.T., Litasov K.D., 2021. Phase Relations in the Ni-S System at High Pressures from ab Initio Computations. ACS EARTH AND SPACE CHEMISTRY 5(3), 596–603. https://doi.org/10.1021/acsearthspacechem.0c00328
  • Shatskiy A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2021. Effect of Water on Carbonate-Silicate Liquid Immiscibility in the System KAlSi3O8CaMgSi2O6-NaAlSi2O6-CaMg(CO3)2 at 6 GPa: Implications for Diamond-Forming Melts. AMERICAN MINERALOGIST 106(2), 165–173. https://doi.org/10.2138/am-2020-7551
  • Litasov K.D., Kagi H., Bekker T.B., Makino Y., Hirata T., Brazhkin V.V., 2021. Why Tolbachik Diamonds Cannot Be Natural. AMERICAN MINERALOGIST 106(1), 44–53. https://doi.org/10.2138/am-2020-7562
  • Gavryushkin P.N., Belonoshko A.B., Sagatov N., Sagatova D., Zhitova E., Krzhizhanovskaya M.G. Rečnik A. Alexandrov E.V. Medrish I.V. Popov Z.I. Litasov K.D., 2021. Metastable Structures of CaCO3 and Their Role in Transformation of Calcite to Aragonite and Postaragonite. CRYSTAL GROWTH AND DESIGN 21(1), 65–74. https://doi.org/10.1021/acs.cgd.0c00589
  • Semerikova A., Chanyshev A.D., Glazyrin K., Pakhomova A., Kurnosov A., Litasov K., Dubrovinsky L., Rashchenko S., 2020. Face-Centered Cubic Platinum Hydride and Phase Diagram of PtH. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY 2020(48), 4532–4538. https://doi.org/10.1002/ejic.202000849
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2020. Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: Implications for Metasomatic Melt Composition in Subcontinental Lithospheric Mantle. CHEMICAL GEOLOGY 558, 119915. https://doi.org/10.1016/j.chemgeo.2020.119915
  • Gavryushkin P.N., Sagatov N., Belonoshko A.B., Banaev M.V., Litasov K.D., 2020. Disordered Aragonite: The New High-Pressure, High-Temperature Phase of CaCO3. JOURNAL OF PHYSICAL CHEMISTRY C 124(48), 26467–26473. https://doi.org/10.1021/acs.jpcc.0c08309
  • Litasov K.D., Bekker T.B., Sagatov N.E., Gavryushkin P.N., Krinitsyn P.G., Kuper K.E., 2020. (Fe,Ni)2P Allabogdanite Can Be an Ambient Pressure Phase in Iron Meteorites. SCIENTIFIC REPORTS 10(1), 8956. https://doi.org/10.1038/s41598-020-66039-0
  • Inerbaev T.M., Sagatov N., Sagatova D., Gavryushkin P.N., Akilbekov A.T., Litasov K.D., 2020. Phase Stability in Nickel Phosphides at High Pressures. ACS EARTH AND SPACE CHEMISTRY 4(11), 1978–1984. https://doi.org/10.1021/acsearthspacechem.0c00181
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2020. Metasomatic Interaction of the Eutectic Na- and K-Bearing Carbonate Melts with Natural Garnet Lherzolite at 6 GPa and 1100–1200 °C: Toward Carbonatite Melt Composition in SCLM. LITHOS 374–375, 105725. https://doi.org/10.1016/j.lithos.2020.105725
  • Nestola F., Goodrich C.A., Morana M., Barbaro A., Jakubek R.S., Christ O., Brenker F.E., Domeneghetti M.C., Dalconi M.C., Alvaro M., Fioretti A.M., Litasov K.D. et al., 2020. Impact Shock Origin of Diamonds in Ureilite Meteorites. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 117(41), 25310–25318. https://doi.org/10.1073/pnas.1919067117
  • Sagatova D., Shatskiy A., Sagatov N., Gavryushkin P.N., Litasov K.D., 2020. Calcium Orthocarbonate, Ca2CO4-Pnma: A Potential Host for Subducting Carbon in the Transition Zone and Lower Mantle. LITHOS 370–371, 105637. https://doi.org/10.1016/j.lithos.2020.105637
  • Bekker T.B., Inerbaev T.M., Yelisseyev A.P., Solntsev V.P., Rashchenko S.V., Davydov A.V., Shatskiy A.F., Litasov K.D., 2020. Experimental and Ab Initio Studies of Intrinsic Defects in "antizeolite" Borates with a Ba12(BO3)66+Framework and Their Influence on Properties. INORGANIC CHEMISTRY 59(18), 13598–13606. https://doi.org/10.1021/acs.inorgchem.0c01966
  • Shatskiy A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2020. Liquid Immiscibility and Phase Relations in the System KAlSi3O8-CaMg(CO3)2±NaAlSi2O6±Na2CO3 at 6 GPa: Implications for Diamond-Forming Melts. CHEMICAL GEOLOGY 550, 119701. https://doi.org/10.1016/j.chemgeo.2020.119701
  • Bekker T.B., Litasov K.D., Shatskiy A.F., Sagatov N.E., Krinitsin P.G., Krasheninnikov S.P., Podborodnikov I.V., Rashchenko S.V., Davydov A.V., Ohfuji H., 2020. Towards the Investigation of Ternary Compound in the Ti-Al-Zr-O System: Effect of Oxygen Fugacity on Phase Formation. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 40(10), 3663–3672. https://doi.org/10.1016/j.jeurceramsoc.2020.03.068
  • Gavryushkin P.N., Sagatov N., Sagatova D., Banaev M.V., Donskikh K.G., Litasov K.D., 2020. The Search for the New Superconductors in the Ni-N System. JOURNAL OF PHYSICS: CONFERENCE SERIES 1590(1), 012010. https://doi.org/10.1088/1742-6596/1590/1/012010
  • Bulatov K.M., Semenov A.N., Bykov A.A., Machikhin A.S., Litasov K.D., Zinin P.V., Rashchenko S.V., 2020. Measurement of Thermal Conductivity in Laser-Heated Diamond Anvil Cell Using Radial Temperature Distribution. HIGH PRESSURE RESEARCH 40(3), 315–324. https://doi.org/10.1080/08957959.2020.1763334
  • Sagatov N.E., Gavryushkin P.N., Banayev M.V., Inerbaev T.M., Litasov K.D., 2020. Phase Relations in the Fe-P System at High Pressures and Temperatures from Ab Initio Computations. HIGH PRESSURE RESEARCH 40(2), 235–244. https://doi.org/10.1080/08957959.2020.1740699
  • Afanas’ev V.P., Litasov K.D., Goryainov S.V., Kovalevskii V.V., 2020. Raman Spectroscopy of Nanopolycrystalline Diamond Produced from Shungite at 15 GPa and 1600 °C. JETP LETTERS 111, 218–224. https://doi.org/10.1134/S0021364020040050
  • Litasov K.D., Bekker T.B., Kagi H., Ohfuji H., 2020. Reply to the Comment on “Comparison of Enigmatic Diamonds from the Tolbachik Arc Volcano (Kamchatka) and Tibetan Ophiolites: Assessing the Role of Contamination by Synthetic Materials” by Litasov et al. (2019) (Gondwana research, 75, 16–27) by Yang et al. GONDWANA RESEARCH 79, 304–307. https://doi.org/10.1016/j.gr.2019.09.011
  • Sagatova D.N., Gavryushkin P.N., Sagatov N.E., Medrish I.V., Litasov K.D., 2020. Phase Diagrams of Iron Hydrides at Pressures of 100–400 GPa and Temperatures of 0–5000 K. JETP LETTERS 111, 145–150. https://doi.org/10.1134/S0021364020030108
  • Bazhan I.S., Litasov K.D., Badyukov D.D., 2020. High-Pressure Phases in the Dhofar 922 L6 Chondrite: Crystallization of Olivine-Ringwoodite Aggregates and Jadeite from Melt. RUSSIAN GEOLOGY AND GEOPHYSICS 61(3), 241–249. https://doi.org/10.15372/RGG2019072
  • Litasov K.D., Bekker T.B., Kagi H., 2020. “Kamchatite” Diamond Aggregate from Northern Kamchatka, Russia: New Find of Diamond Formed by Gas Phase Condensation or Chemical Vapor Deposition – Discussion. AMERICAN MINERALOGIST 105(1), 141–143. https://doi.org/10.2138/am-2020-7182
  • Litasov K.D., Bekker T.B., Kagi H., 2019. Reply to the Discussion of “Enigmatic Super-Reduced Phases in Corundum from Natural Rocks: Possible Contamination from Artificial Abrasive Materials or Metallurgical Slags” by Litasov et al. (Lithos, 340–341, 181–190) by W.L. Griffin, V. Toledo and S.Y. O'Reilly. LITHOS 348–349, 105170. https://doi.org/10.1016/j.lithos.2019.105170
  • Shatskiy A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2019. Origin of K-Rich Diamond-Forming Immiscible Melts and CO2 Fluid via Partial Melting of Carbonated Pelites at a Depth of 180–200 km. GONDWANA RESEARCH 75, 154–171. https://doi.org/10.1016/j.gr.2019.05.004
  • Litasov K.D., Kagi H., Voropaev S.A., Hirata T., Ohfuji H., Ishibashi H., Makino Y., Bekker T.B. et al., 2019. Comparison of Enigmatic Diamonds from the Tolbachik Arc Volcano (Kamchatka) and Tibetan Ophiolites: Assessing the Role of Contamination by Synthetic Materials. GONDWANA RESEARCH 75, 16–27. https://doi.org/10.1016/j.gr.2019.04.007
  • Gavryushkin P.N., Bekhtenova A., Lobanov S.S., Shatskiy A., Likhacheva A.Y., Sagatova D., Sagatov N., Rashchenko S.V., Litasov K.D. et al., 2019. High-Pressure Phase Diagrams of Na2CO3 and K2CO3. MINERALS 9(10), 599. https://doi.org/10.3390/min9100599
  • Litasov K.D., Shatskiy A.F., Minin D.A., Kuper K.E., Ohfuji H., 2019. The Ni–Ni2P Phase Diagram at 6 GPa with Implication to Meteorites and Super-Reduced Terrestrial Rocks. HIGH PRESSURE RESEARCH 39(4), 561–578. https://doi.org/10.1080/08957959.2019.1672677
  • Fedoraeva A.S., Shatskiy A., Litasov K.D., 2019. The Join CaCO3-CaSiO3 at 6 GPa with Implication to Ca-Rich Lithologies Trapped by Kimberlitic Diamonds. HIGH PRESSURE RESEARCH 39(4), 547–560. https://doi.org/10.1080/08957959.2019.1660325
  • Litasov K.D., Kagi H., Bekker T.B., 2019. Enigmatic Super-Reduced Phases in Corundum from Natural Rocks: Possible Contamination from Artificial Abrasive Materials or Metallurgical Slags. LITHOS 340, 181–190. https://doi.org/10.1016/j.lithos.2019.05.013
  • Arefiev A.V., Podborodnikov I.V., Shatskiy A.F., Litasov K.D., 2019. Synthesis and Raman Spectra of K–Ca Double Carbonates: K2Ca(CO3)2 Bütschliite, Fairchildite, and K2Ca2(CO3)3 at 1 Atm. GEOCHEMISTRY INTERNATIONAL 57, 981–987. https://doi.org/10.1134/S0016702919090039
  • Litasov K.D., Shatskiy A.F., 2019. MgCO3+SiO2 Reaction at Pressures up to 32 GPa Studied Using In-Situ X-Ray Diffraction and Synchrotron Radiation. GEOCHEMISTRY INTERNATIONAL 57, 1024–1033. https://doi.org/10.1134/S0016702919090064
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Litasov K.D., 2019. The K2CO3–CaCO3–MgCO3 System at 6 GPa: Implications for Diamond Forming Carbonatitic Melts. MINERALS 9(9), 558. https://doi.org/10.3390/min9090558
  • Arefiev A.V., Litasov K.D., Shatskiy A., Greaux S., Irifune T., 2019. Experimental Evidence for High-Pressure Transformation of Merrillite and Na-Bearing Phosphates. Proceedings of the 82nd Annual Meeting of The Meteoritical Society 2157, 6126.
  • Litasov K.D., Sano Y., Takahata N., Miki T., Teplyakova S.N., Skripnik A.Y., 2019. U-Pb and Pb-Pb Dating of the Apatite from IAB Iron Meteorites. Proceedings of the 82nd Annual Meeting of The Meteoritical Society (2157), 6125.
  • Litasov K.D., Teplyakova S.N., Shatskiy A., Kuper K.E., 2019. Fe-Ni-PS Melt Pockets in Elga IIE Iron Meteorite: Evidence for the Origin at High-Pressures up to 20 GPa. MINERALS 9(10), 616. https://doi.org/10.3390/min9100616
  • Litasov K.D., Badyukov D.D., 2019. Raman Spectroscopy of High-Pressure Phases in Shocked L6 Chondrite NWA 5011. GEOCHEMISTRY INTERNATIONAL 57, 912–922. https://doi.org/10.1134/S001670291908007X
  • Martirosyan N.S., Litasov K.D., Lobanov S.S., Goncharov A.F., Shatskiy A., Ohfuji H., Prakapenka V., 2019. The Mg-Carbonate–Fe Interaction: Implication for the Fate of Subducted Carbonates and Formation of Diamond in the Lower Mantle. GEOSCIENCE FRONTIERS 10(4), 1449–1458. https://doi.org/10.1016/j.gsf.2018.10.003
  • Ponomarev D.S., Litasov K.D., Ishikawa A., Bazhan I.S., Hirata T., Podgornykh N.M., 2019. The Maslyanino Iron Meteorite with Silicate Inclusions: Mineralogical and Geochemical Study and Classification Signatures. RUSSIAN GEOLOGY AND GEOPHYSICS 60(7), 752–767. https://doi.org/10.15372/RGG2019055
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Bekhtenova A., Litasov K.D., 2019. New Data on the System Na2CO3–CaCO3–MgCO3 at 6 GPa with Implications to the Composition and Stability of Carbonatite Melts at the Base of Continental Lithosphere. CHEMICAL GEOLOGY 515, 50–60. https://doi.org/10.1016/j.chemgeo.2019.03.027
  • Litasov K.D., Kagi H., Bekker T.B., Hirata T., Makino Y., 2019. Cuboctahedral Type Ib Diamonds in Ophiolitic Chromitites and Peridotites: The Evidence for Anthropogenic Contamination. HIGH PRESSURE RESEARCH 39(3), 480–488. https://doi.org/10.1080/08957959.2019.1616183
  • Pokhilenko N.P., Shumilova T.G., Afanas’ev V.P., Litasov K.D., 2019. Diamonds in the Kamchatka peninsula (Tolbachik and Avacha volcanoes): Natural origin or contamination? RUSSIAN GEOLOGY AND GEOPHYSICS 60(5), 463–472. https://doi.org/10.15372/RGG2019024
  • Litasov K.D., Inerbaev T.M., Abuova F.U., Chanyshev A.D., Dauletbekova A.K., Akilbekov A.T., 2019. High-Pressure Elastic Properties of Polycyclic Aromatic Hydrocarbons Obtained by First-Principles Calculations. GEOCHEMISTRY INTERNATIONAL 57, 499–508. https://doi.org/10.1134/S0016702919050069
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Bekhtenova A., Litasov K.D., 2019. The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere. MINERALS 9(5), 296. https://doi.org/10.3390/min9050296
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Litasov K.D., 2019. Phase Relations in the System Na2CO3–CaCO3–MgCO3 at 3 GPa with Implications for Carbonatite Genesis and Evolution. LITHOS 330, 74–89. https://doi.org/10.1016/j.lithos.2019.01.035
  • Litasov K.D., Ishikawa A., Kopylova A.G., Podgornykh N.M., Pokhilenko N.P., 2019. Mineralogy, Trace Element Composition, and Classification of Onello High-Ni Ataxite. DOKLADY EARTH SCIENCES 485, 381–385. https://doi.org/10.1134/S1028334X19040068
  • Nakamura E., Kunihiro T., Ota T., Sakaguchi C., Tanaka R., Kitagawa H., Kobayashi K., Yamanaka M., … Litasov K., 2019. Hypervelocity Collision and Water-Rock Interaction in Space Preserved in the Chelyabinsk Ordinary Chondrite. PROCEEDINGS OF THE JAPAN ACADEMY, SERIES B 95(4), 165–177. https://doi.org/10.2183/pjab.95.013
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Rashchenko S.V., Chanyshev A.D., Litasov K.D., 2019. The System K2CO3-CaCO3 at 3 GPa: Link between Phase Relations and Variety of K-Ca Double Carbonates at ≤0.1 and 6 GPa. PHYSICS AND CHEMISTRY OF MINERALS 46, 229–244. https://doi.org/10.1007/s00269-018-1000-z
  • Litasov K.D., Badyukov D.D., Pokhilenko N.P., 2019. Formation Parameters of High-Pressure Minerals in the Dhofar 717 and 864 Chondrite Meteorites. DOKLADY EARTH SCIENCES 485, 327–330. https://doi.org/10.1134/S1028334X19030322
  • Gavryushkin P.N., Rečnik A., Daneu N., Sagatov N., Belonoshko A.B., Popov Z.I., Ribic V., Litasov K.D., 2019. Temperature Induced Twinning in Aragonite: Transmission Electron Microscopy Experiments and Ab Initio Calculations. ZEITSCHRIFT FÜR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS 234(2), 79–84. https://doi.org/10.1515/zkri-2018-2109
  • Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T., 2019. Effect of Water on the Magnesite–Iron Interaction, with Implications for the Fate of Carbonates in the Deep Mantle. LITHOS 326, 435–445. https://doi.org/10.1016/j.lithos.2019.01.004
  • Sagatov N., Gavryushkin P.N., Inerbaev T.M., Litasov K.D., 2019. New High-Pressure Phases of Fe7N3 and Fe7C3 Stable at Earth’s Core Conditions: Evidences for Carbon–Nitrogen Isomorphism in Fe-Compounds. RSC ADVANCES 9(7), 3577–3581. https://doi.org/10.1039/C8RA09942A
  • Minin D.A., Shatskiy A.F., Litasov K.D., Ohfuji H., 2019. The Fe–Fe2P phase diagram at 6 GPa. HIGH PRESSURE RESEARCH 39(1), 50–68. https://doi.org/10.1080/08957959.2018.1562552
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Litasov K.D., 2019. Phase Relations in the System Na2CO3–CaCO3–MgCO3 at 3 GPa with Implications for Carbonatite Genesis and Evolution. LITHOS 330–331, 74–89. https://doi.org/10.1016/j.lithos.2019.01.035
  • Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T., 2019. Effect of Water on the Magnesite–Iron Interaction, with Implications for the Fate of Carbonates in the Deep Mantle. LITHOS 326–327, 435–445. https://doi.org/10.1016/j.lithos.2019.01.004
  • Gavryushkin P.N., Rečnik A., Daneu N., Sagatov N., Belonoshko A.B., Popov Z., Ribić V., Litasov K.D., 2019. Temperature Induced Twinning in Aragonite: Transmission Electron Microscopy Experiments and Ab Initio Calculations. ZEITSCHRIFT FUR KRISTALLOGRAPHIE – CRYSTALLINE MATERIALS 234(2), 79–84. https://doi.org/10.1515/zkri-2018-2109
  • Minin D.A., Shatskiy A.F., Litasov K.D., Ohfuji H., 2019. The Fe–Fe2P Phase Diagram at 6 GPa. HIGH PRESSURE RESEARCH 39(1), 50–68. https://doi.org/10.1080/08957959.2018.1562552
  • Sagatov N., Gavryushkin P.N., Inerbaev T.M., Litasov K.D., 2019. New High-Pressure Phases of Fe7N3 and Fe7C3 Stable at Earth’s Core Conditions: Evidences for Carbon-Nitrogen Isomorphism in Fe-Compounds. RSC ADVANCES 9(7), 3577–3581. https://doi.org/10.1039/C8RA09942A