Preview

Геодинамика и тектонофизика

Расширенный поиск

Литасов Константин Дмитриевич

доктор геол.-мин. наук, профессор РАН

Институт геологии и минералогии имени В. С. Соболева СО РАН, Новосибирск, Россия

К.Д. Литасовым были обоснованы фундаментальные различия при плавлении в областях мантии Земли, содержащей Н2О, СО2 и восстановленный С–О–Н–флюид. Доказано, что плавление в системах с Н2О зависит от растворимости водорода в структуре силикатов, а плавление в системах с СО2 определяется стабильностью щелочных карбонатов и контролируется количеством Na2O и K2O в системе. Показано, что большинство солидусных кривых в системах с летучими компонентами выполаживается при давлениях выше 6–8 ГПа, создавая условия для плавления при пересечении с РТ-профилями зон субдукции и средней мантии. Сделан вывод о плавлении карбонатов субдукционных плит в переходном слое мантии, что приводит к образованию карбонатитовых диапиров, которые могут всплывать сквозь мантию по механизму «растворение-осаждение», приводить к созданию окисленных каналов в мантии и являться эффективным механизмом образования глубинных алмазов. Предложенный механизм может являться доминирующим для миграции расплавов в мантии Земли. (источник: сайт СО РАН)





Публикации 2019-2017

  • Litasov K. D., Shatskiy A. F., Minin D. A., Kuper K. E., Ohfuji H., 2019. The Ni–Ni2P phase diagram at 6 GPa with implication to meteorites and super-reduced terrestrial rocks. High Pressure Research 39(4), 561-578. https://doi.org/10.1080/08957959.2019.1672677

  • Fedoraeva A. S., Shatskiy A., Litasov K. D., 2019. The join CaCO3-CaSiO3 at 6 GPa with implication to Ca-rich lithologies trapped by kimberlitic diamonds. High Pressure Research 39(4), 547-560. https://doi.org/10.1080/08957959.2019.1660325
  • Litasov K. D., Kagi H., Bekker T. B., 2019. Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos 340, 181-190. https://doi.org/10.1016/j.lithos.2019.05.013
  • Arefiev A. V., Podborodnikov I. V., Shatskiy A. F., Litasov K. D., 2019. Synthesis and Raman Spectra of K–Ca Double Carbonates: K 2 Ca (CO 3) 2 Bütschliite, Fairchildite, and K 2 Ca 2 (CO 3) 3 at 1 Atm. Geochemistry International 57(9), 981-987. https://doi.org/10.1134/S0016702919090039
  • Litasov K. D., Shatskiy A. F., 2019. MgCO 3+ SiO 2 Reaction at Pressures up to 32 GPa Studied Using in-Situ X-Ray Diffraction and Synchrotron Radiation. Geochemistry International 57(9), 1024-1033. https://doi.org/10.1134/S0016702919090064
  • Arefiev A. V., Shatskiy A., Podborodnikov I. V., Litasov K. D., 2019. The K2CO3–CaCO3–MgCO3 system at 6 GPa: implications for diamond forming carbonatitic melts. Minerals9(9), 558. https://doi.org/10.3390/min9090558
  • Arefiev A. V., Litasov K. D., Shatskiy A., Greaux S., Irifune T., 2019. Experimental Evidence for High-Pressure Transformation of Merrillite and Na-Bearing Phosphates. LPICo82(2157), 6126.
  • Litasov K. D., Sano Y., Takahata N., Miki T., Teplyakova S. N., Skripnik A. Y., 2019. U-Pb and Pb-Pb Dating of the Apatite from IAB Iron Meteorites. LPICo82(2157), 6125.
  • Litasov K. D., Teplyakova S. N., Shatskiy A., Kuper K. E., 2019. Fe-Ni-PS melt pockets in Elga IIE iron meteorite: Evidence for the origin at high-pressures up to 20 GPa. Minerals 9(10), 616. https://doi.org/10.3390/min9100616
  • Litasov K. D., Badyukov D. D., 2019. Raman Spectroscopy of High-Pressure Phases in Shocked L6 Chondrite NWA 5011. Geochemistry International 57(8), 912-922. https://doi.org/10.1134/S001670291908007X
  • Martirosyan N. S., Litasov K. D., Lobanov S. S., Goncharov A. F., Shatskiy A., Ohfuji H., Prakapenka V., 2019. The Mg-carbonate–Fe interaction: Implication for the fate of subducted carbonates and formation of diamond in the lower mantle. Geoscience Frontiers 10(4), 1449-1458. https://doi.org/10.1016/j.gsf.2018.10.003
  • Ponomarev D. S., Litasov K. D., Ishikawa A., Bazhan I. S., Hirata T., Podgornykh N. M., 2019. The Maslyanino iron meteorite with silicate inclusions: Mineralogical and geochemical study and classification signatures. Russian Geology and Geophysics60(7), 752-767. https://doi.org/10.15372/RGG2019055
  • Podborodnikov I. V., Shatskiy A., Arefiev A. V., Bekhtenova A., Litasov K. D., 2019. New data on the system Na2CO3–CaCO3–MgCO3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere. Chemical Geology 515, 50-60. https://doi.org/10.1016/j.chemgeo.2019.03.027
  • Litasov K. D., Kagi H., Bekker T. B., Hirata T., Makino Y., 2019. Cuboctahedral type Ib diamonds in ophiolitic chromitites and peridotites: the evidence for anthropogenic contamination. High Pressure Research 39(3), 480-488. https://doi.org/10.1080/08957959.2019.1616183
  • Pokhilenko N. P., Shumilova T. G., Afanas’ev V. P., Litasov K. D., 2019. Diamonds in the Kamchatka peninsula (Tolbachik and Avacha volcanoes): Natural origin or contamination? Russian Geology and Geophysics 60(5), 463-472. https://doi.org/10.15372/RGG2019024
  • Litasov K. D., Inerbaev T. M., Abuova F. U., Chanyshev A. D., Dauletbekova A. K., Akilbekov A. T., 2019. High-Pressure Elastic Properties of Polycyclic Aromatic Hydrocarbons Obtained by First-Principles Calculations. Geochemistry International 57(5), 499-508. https://doi.org/10.1134/S0016702919050069
  • Arefiev A. V., Shatskiy A., Podborodnikov I. V., Bekhtenova A., Litasov K. D., 2019. The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere. Minerals 9(5), 296. https://doi.org/10.3390/min9050296
  • Podborodnikov I. V., Shatskiy A., Arefiev A. V., Litasov K. D., 2019. Phase relations in the system Na2CO3–CaCO3–MgCO3 at 3 GPa with implications for carbonatite genesis and evolution. Lithos 330, 74-89. https://doi.org/10.1016/j.lithos.2019.01.035
  • Litasov K. D., Ishikawa A., Kopylova A. G., Podgornykh N. M., Pokhilenko N. P., 2019. Mineralogy, trace element composition, and classification of Onello high-Ni ataxite. Doklady Earth Sciences 485(2), 381-385). https://doi.org/10.1134/S1028334X19040068
  • Nakamura E., Kunihiro T., Ota T., Sakaguchi C., Tanaka R., Kitagawa H., Kobayashi K., Yamanaka M., Shimaki Y., Bebout G.E., Miura H., Yamamoto T., Malkovets V., Grokhovsky V., Koroleva O., Litasov K., 2019. Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite. Proceedings of the Japan Academy, Series B 95(4), 165-177. https://doi.org/10.2183/pjab.95.013
  • Arefiev A. V., Shatskiy A., Podborodnikov I. V., Rashchenko S. V., Chanyshev A. D., Litasov K. D., 2019. The system K 2 CO 3–CaCO 3 at 3 GPa: link between phase relations and variety of K–Ca double carbonates at≤ 0.1 and 6 GPa. Physics and Chemistry of Minerals 46(3), 229-244. https://doi.org/10.1007/s00269-018-1000-z
  • Litasov K. D., Badyukov D. D., Pokhilenko N. P., 2019. Formation parameters of high-pressure minerals in the Dhofar 717 and 864 chondrite meteorites. Doklady Earth Sciences 485(1), 327-330. https://doi.org/10.1134/S1028334X19030322
  • Gavryushkin P. N., Rečnik A., Daneu N., Sagatov N., Belonoshko A. B., Popov Z. I., Ribic V., Litasov, K. D., 2019. Temperature induced twinning in aragonite: transmission electron microscopy experiments and ab initio calculations. Zeitschrift für Kristallographie-Crystalline Materials 234(2), 79-84. https://doi.org/10.1515/zkri-2018-2109
  • Martirosyan N. S., Shatskiy A., Chanyshev A. D., Litasov K. D., Podborodnikov I. V., Yoshino T., 2019. Effect of water on the magnesite–iron interaction, with implications for the fate of carbonates in the deep mantle. Lithos 326, 435-445. https://doi.org/10.1016/j.lithos.2019.01.004
  • Sagatov N., Gavryushkin P. N., Inerbaev T. M., Litasov K. D., 2019. New high-pressure phases of Fe 7 N 3 and Fe 7 C 3 stable at Earth's core conditions: evidences for carbon–nitrogen isomorphism in Fe-compounds. RSC Advances 9(7), 3577-3581. https://doi.org/10.1039/C8RA09942A  
  • Minin D. A., Shatskiy A. F., Litasov K. D., Ohfuji H., 2019. The Fe–Fe2P phase diagram at 6 GPa. High Pressure Research 39(1), 50-68.  https://doi.org/10.1080/08957959.2018.1562552
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Bekhtenova A., Litasov K.D., 2019. New data on the system Na 2 CO 3 –CaCO 3 –MgCO 3 at 6 GPa with implications to the composition and stability of carbonatite melts at the base of continental lithosphere Chemical Geology 515, 50-60. https://doi.org/10.1016/j.chemgeo.2019.03.027
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Litasov K.D., 2019. Phase relations in the system Na 2 CO 3 –CaCO 3 –MgCO 3 at 3 GPa with implications for carbonatite genesis and evolution Lithos 330-331, 74-89 https://doi.org/10.1016/j.lithos.2019.01.035
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Rashchenko S.V., Chanyshev A.D., Litasov K.D., 2019. The system K 2 CO 3 –CaCO 3 at 3 GPa: link between phase relations and variety of K–Ca double carbonates at ≤ 0.1 and 6 GPa Physics and Chemistry of Minerals 46(3), 229-244 https://doi.org/10.1007/s00269-018-1000-z
  • Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T.,  2019. Effect of water on the magnesite–iron interaction, with implications for the fate of carbonates in the deep mantle Lithos 326-327, 435-445 https://doi.org/10.1016/j.lithos.2019.01.004
  • Gavryushkin P.N., Rečnik A., Daneu N., Sagatov N.,  Belonoshko A.B.,  Popov Z., Ribić V., Litasov K.D.,  2019. Temperature induced twinning in aragonite: Transmission electron microscopy experiments and ab initio calculations Zeitschrift fur Kristallographie - Crystalline Materials 234(2), 79-84 https://doi.org/10.1515/zkri-2018-2109
  • Minin D.A., Shatskiy A.F., Litasov K.D., Ohfuji H., 2019. The Fe–Fe 2 P phase diagram at 6 GPa High Pressure Research 39(1), 50-68
  • Sagatov N., Gavryushkin P.N., Inerbaev T.M., Litasov K.D., 2019. New high-pressure phases of Fe 7 N 3 and Fe 7 C 3 stable at Earth's core conditions: evidences for carbon-nitrogen isomorphism in Fe-compounds RSC Advances 9(7), 3577-3581 https://doi.org/10.1039/C8RA09942A
  • Nakamura E., Kunihiro T., Ota T., Sakaguchi C.,  Tanaka R.,  Kitagawa H.,  Kobayashi K.,  Yamanaka M.,  Shimaki Y.,  Bebout G.E.,  Miura H.,  Yamamoto T.,  Malkovets V.,  Grokhovsky V., Koroleva O., Litasov K., 2019. Hypervelocity collision and water-rock interaction in space preserved in the Chelyabinsk ordinary chondrite Proceedings of the Japan Academy. Series B, Physical and biological sciences 95(4), 165-177 https://doi.org/10.2183/pjab.95.013
  • Ohtani E., Yuan L., Ohira I., Shatskiy A., Litasov K., 2018. Fate of water transported into the deep mantle by slab subduction Journal of Asian Earth Sciences 167, 2-10 https://doi.org/10.1016/j.jseaes.2018.04.024
  • Romanenko A.V., Rashchenko S.V., Kurnosov A., Dubrovinsky L.,  Goryainov S.V., Likhacheva A.Y., Litasov K.D., 2018. Single-standard method for simultaneous pressure and temperature estimation using Sm 2+ :SrB 4 O 7 fluorescence Journal of Applied Physics 124(16), 165902 https://doi.org/10.1063/1.5046144
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Litasov K.D., 2018. Melting and subsolidus phase relations in the system K2 CO3 –MgCO3 at 3 GPa  High Pressure Research 38(4),  422-439
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Rashchenko S.V., Chanyshev A.D., Litasov K.D., 2018. The system Na2 CO3 –CaCO3 at 3 GPa Physics and Chemistry of Minerals 45(8), 773-787 https://doi.org/10.1007/s00269-018-0961-2
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Chanyshev A.D., Litasov K.D., 2018. The system Na2 CO3 –MgCO3 at 3 GPa High Pressure Research 38(3), 281-292 https://doi.org/10.1080/08957959.2018.1488972
  • Sokolova T.S., Dorogokupets P.I., Litasov K.D., Danilov B.S., Dymshits A.M., 2018. Spreadsheets to calculate P–V–T relations, thermodynamic and thermoelastic properties of silicates in the MgSiO 3 –MgO system High Pressure Research 38(3), 193-211 https://doi.org/10.1080/08957959.2018.1465056
  • Kolesnichenko M.V., Zedgenizov D.A., Ragozin A.L., Litasov K.D., Shatsky V.S., 2018. The role of eclogites in the redistribution of water in the subcontinental mantle of the Siberian craton: results of determination of the water content in minerals from the Udachnaya pipe eclogites                Russian Geology and Geophysics 59(7), 763-779 https://doi.org/10.1016/j.rgg.2018.07.004
  • Chanyshev A.D., Litasov K.D., Rashchenko S.V., Sano-Furukawa A.,  Kag, H.,  Hattori T.,  Shatskiy A.F.,  Dymshits A.M.,, Sharygin I.S., Higo Y., 2018. High-Pressure-High-Temperature Study of Benzene: Refined Crystal Structure and New Phase Diagram up to 8 GPa and 923 K Crystal Growth and Design 18(5), 3016-3026 https://doi.org/10.1021/acs.cgd.8b00125
  • Ivanov A.V., Mukasa S.B., Kamenetsky V.S., Ackerson M.,  Demonterova E.I.,  Pokrovsky B.G.,  Vladykin N.V.,  Kolesnichenko M.V., Litasov K.D., Zedgenizov, D.A., 2018. Volatile concentrations in olivine-hosted melt inclusions from meimechite and melanephelinite lavas of the Siberian Traps Large Igneous Province: Evidence for flux-related high-Ti, high-Mg magmatism Chemical Geology 483, 442-462 https://doi.org/10.1016/j.chemgeo.2018.03.011
  • Zhimulev E.I., Chepurov A.I., Sonin V.M., Litasov K.D., Chepurov A.A., 2018. Experimental modeling of percolation of molten iron through polycrystalline olivine matrix at 2.0–5.5 GPa and 1600°C High Pressure Research 38(2), 153-164 https://doi.org/10.1080/08957959.2018.1458847
  • Shatskiy A., Podborodnikov I.V., Arefiev A.V., Minin D.A., Chanyshev A.D., Litasov K.D., 2018.Revision of the CaCO3 -MgCO3 phase diagram at 3 and 6 GPa American Mineralogist 103(3), 441-452 https://doi.org/10.2138/am-2018-6277
  • Gavryushkin P.N., Sagatov N., Popov Z.I., Bekhtenova A., Inerbaev T.M., Litasov K.D., 2018. Structure and Properties of New High-Pressure Phases of Fe7 N3 JETP Letters 107(6), 379-383 https://doi.org/10.1134/S0021364018060061
  • Sharygin I.S., Shatskiy A., Litasov K.D., Golovin A.V., Ohtani E., Pokhilenko N.P., 2018.   Interaction of peridotite with Ca-rich carbonatite melt at 3.1 and 6.5 GPa: Implication for merwinite formation in upper mantle, and for the metasomatic origin of sublithospheric diamonds with Ca-rich suite of inclusions Contributions to Mineralogy and Petrology 173(3), 22 https://doi.org/10.1007/s00410-017-1432-3
  • Rashchenko S.V., Shatskiy A.F., Arefiev A.V., Seryotkin Y.V., Litasov K.D., 2018. Correction: Na4 Ca(CO3 )3 : a novel carbonate analog of borate optical materials (CrystEngComm (2018) 20 (5228-5232) CrystEngComm 20(40), 6358 https://doi.org/10.1039/c8ce90156b
  • Rashchenko S.V., Shatskiy A.F., Arefiev A.V., Seryotkin Y.V., Litasov K.D., 2018. Na4 Ca(CO3 )3 : A novel carbonate analog of borate optical materials CrystEngComm 20(35), 5228-5232 https://doi.org/10.1039/C8CE00745D
  • Litasov K.D., Ponomarev D.S., Bazhan I.S., Ishikawa A., Podgornykh N.M., Pokhilenko N.P., 2018. Altaite (PbTe) in the Maslyanino Iron Meteorite with Silicate Inclusions Doklady Earth Sciences 478(1), 79-81 https://doi.org/10.1134/S1028334X18010154
  • Dymshits A.M., Litasov K.D., Shatskiy A., Chanyshev A.D., Podborodnikov I.V., Higo Y., 2018. Phase boundary between cubic B1 and rhombohedral structures in (Mg,Fe)O magnesiowüstite determined by in situ X-ray diffraction measurements                Physics and Chemistry of Minerals 45(1), 51-58 https://doi.org/10.1007/s00269-017-0901-6
  • Litasov K.D., Ishikawa A., Bazhan I.S., Ponomarev D.S.,  Hirata T., Podgornykh N.M., Pokhilenko N.P.,              2018. Trace Element Composition and Classification of the Chinga Iron Meteorite Doklady Earth Sciences 478(1), 62-66 https://doi.org/10.1134/S1028334X18010063
  • Chanyshev A.D., Litasov K.D., Furukawa Y., Kokh K.A., Shatskiy A.F., 2017. Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient and high pressures Scientific Reports 7(1), 7889 https://doi.org/10.1038/s41598-017-08529-2
  • Litasov K.D., Podgornykh N.M.,  2017. Raman spectroscopy of various phosphate minerals and occurrence of tuite in the Elga IIE iron meteorite Journal of Raman Spectroscopy 48(11), 1518-1527 https://doi.org/10.1002/jrs.5119
  • Rashchenko S.V., Bakakin V.V., Shatskiy A.F., Gavryushkin P.N., Seryotkin Y.V., Litasov K.D.,  2017. Noncentrosymmetric Na2 Ca4 (CO3 )5 Carbonate of "m13 M23 XY3 Z" Structural Type and Affinity between Borate and Carbonate Structures for Design of New Optical Materials Crystal Growth and Design 17(11), 6079-6084 https://doi.org/10.1021/acs.cgd.7b01161
  • Zedgenizov D.A., Litasov K.D., 2017. Looking for "missing" nitrogen in the deep Earth American Mineralogist 102(9),   1769-1770 https://doi.org/10.2138/am-2017-6218
  • Chanyshev A.D., Litasov K.D., Shatskiy A.F., Sharygin I.S., Higo Y., Ohtani E., 2017. Transition from melting to carbonization of naphthalene, anthracene, pyrene and coronene at high pressure Physics of the Earth and Planetary Interiors 270, 29-39 https://doi.org/10.1016/j.pepi.2017.06.011
  • Shatskiy A., Podborodnikov I.V., Arefiev A.V., Litasov K.D.,  Chanyshev A.D.,  Sharygin I.S., Karmanov N.S., Ohtani E., 2017. Effect of alkalis on the reaction of clinopyroxene with Mg-carbonate at 6 GPa: Implications for partial melting of carbonated lherzolite American Mineralogist 102(9), 1934-1946 https://doi.org/10.2138/am-2017-6048
  • Lobanov S.S., Dong X., Martirosyan N.S., Samtsevich A.I.,  Stevanovic V.,  Gavryushkin P.N.,  Litasov K.D.,  Greenberg E.,  Prakapenka V.B., Oganov A.R., Goncharov A.F., 2017.  Raman spectroscopy and x-ray diffraction of sp3 CaC O3 at lower mantle pressures Physical Review B 96(10), 104101 https://doi.org/10.1103/PhysRevB.96.104101
  • Likhacheva A.Y., Chanyshev A.D., Goryainov S.V., Rashchenko S.V., Litasov K.D., 2017. High-Pressure–High Temperature (HP-HT) Stability of Polytetrafluoroethylene: Raman Spectroscopic Study Up to 10 GPa and 600 ℃ Applied Spectroscopy 71(8), 1842-1848
  • Gavryushkin P.N., Litasov K.D., Dobrosmislov S.S., Popov Z.I., 2017. High-pressure phases of sulfur: Topological analysis and crystal structure prediction Physica Status Solidi (B) Basic Research 254(7), 1600857 https://doi.org/10.1002/pssb.201600857
  • Kolesnichenko M.V., Zedgenizov D.A., Litasov K.D., Safonova I.Y., Ragozin A.L., 2017. Heterogeneous distribution of water in the mantle beneath the central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe Gondwana Research 47, 249-266 https://doi.org/10.1016/j.gr.2016.09.011
  • Bazhan I.S., Litasov K.D., Ohtani E., Ozawa S., 2017. Majorite-olivine-high-Ca pyroxene assemblage in the shock-melt veins of Pervomaisky L6 chondrite American Mineralogist 102(6), 1279-1286 https://doi.org/10.2138/am-2017-5892
  • Litasov K.D., Shatskiy A., Ponomarev D.S., Gavryushkin P.N., 2017. Equations of state of iron nitrides ε-Fe3 Nx and γ-Fe4 Ny to 30 GPa and 1200 K and implication for nitrogen in the Earth's core Journal of Geophysical Research: Solid Earth 122(5), 3574-3584 https://doi.org/10.1002/2017JB014059
  • Shatskiy A., Litasov K.D., Sharygin I.S., Ohtani E., 2017. Composition of primary kimberlite melt in a garnet lherzolite mantle source: constraints from melting phase relations in anhydrous Udachnaya-East kimberlite with variable CO2 content at 6.5 GPa Gondwana Research 45, 208-227 https://doi.org/10.1016/j.gr.2017.02.009
  • Sharygin I.S., Litasov K.D., Shatskiy A., Safonov, O.G.,  Golovin, A.V., Ohtani, E., Pokhilenko, N.P.,  2017. Experimental constraints on orthopyroxene dissolution in alkali-carbonate melts in the lithospheric mantle: Implications for kimberlite melt composition and magma ascent Chemical Geology 455, 44-56 https://doi.org/10.1016/j.chemgeo.2016.09.030
  • Bolotina N.B., Gavryushkin P.N., Korsakov A.V., Rashchenko S.V.,  Seryotkin Y.V.,  Golovin A.V.,  Moine B.N.,  , Zaitsev A.N., Litasov K.D., 2017. Incommensurately modulated twin structure of nyerereite Na1.64 K0.36 Ca(CO3 )2 Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials 73(2), 276-284 https://doi.org/10.1107/S2052520616020680
  • Litasov K.D., Shatskiy A., Gavryushkin P.N., Bekhtenova A.E.,  Dorogokupets P.I.,  Danilov B.S.,  Higo Y., Akilbekov A.T., Inerbaev T.M., 2017. P-V-T equation of state of CaCO 3 aragonite to 29 GPa and 1673 K: In situ X-ray diffraction study Physics of the Earth and Planetary Interiors 265, 82-91 https://doi.org/10.1016/j.pepi.2017.02.006
  • Dorogokupets P.I., Dymshits A.M., Litasov K.D., Sokolova T.S.,               2017. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K Scientific Reports 7, 41863 https://doi.org/10.1038/srep41863
  • Ohfuji H., Nakaya M., Yelisseyev A.P., Afanasiev V.P., Litasov K.D., 2017. Mineralogical and crystallographic features of polycrystalline yakutite diamond Journal of Mineralogical and Petrological Sciences 112(1), 46-51 https://doi.org/10.2465/jmps.160719g
  • Bazhan I.S., Ozawa S., Miyahara M., Ohtani E., Litasov K.D., 2017. “Spherulite-like” jadeite growth in shock-melt veins of the Novosibirsk H5/6 chondrite Russian Geology and Geophysics 58(1), 12-19 https://doi.org/10.1016/j.rgg.2016.04.012
  • Gavryushkin P.N., Martirosyan N.S., Inerbaev T.M., Popov Z.I.,  Rashchenko S.V.,  Likhacheva A.Yu.,  Lobanov S.S.,  Goncharov A.F., Prakapenka V.B., Litasov K.D., 2017. Aragonite-II and CaCO3 -VII: New high-pressure, high-temperature polymorphs of CaCO3 Crystal Growth and Design 17(12), 6291-6296 https://doi.org/10.1021/acs.cgd.7b00977