Preview

Геодинамика и тектонофизика

Расширенный поиск

Литасов Константин Дмитриевич

Литасов Константин Дмитриевич

доктор геол.-мин. наук, профессор РАН

Институт физики высоких давлений имени Л. Ф. Верещагина РАН, Москва, Россия

ResearchGate  ORCID









К.Д. Литасовым были обоснованы фундаментальные различия при плавлении в областях мантии Земли, содержащей Н2О, СО2 и восстановленный С–О–Н–флюид. Доказано, что плавление в системах с Н2О зависит от растворимости водорода в структуре силикатов, а плавление в системах с СО2 определяется стабильностью щелочных карбонатов и контролируется количеством Na2O и K2O в системе. Показано, что большинство солидусных кривых в системах с летучими компонентами выполаживается при давлениях выше 6–8 ГПа, создавая условия для плавления при пересечении с РТ-профилями зон субдукции и средней мантии. Сделан вывод о плавлении карбонатов субдукционных плит в переходном слое мантии, что приводит к образованию карбонатитовых диапиров, которые могут всплывать сквозь мантию по механизму «растворение-осаждение», приводить к созданию окисленных каналов в мантии и являться эффективным механизмом образования глубинных алмазов. Предложенный механизм может являться доминирующим для миграции расплавов в мантии Земли. (источник: сайт СО РАН)


Публикации 2015-2023

 

  • Vinogradova Yu.G., Shatskiy A., Arefiev A.V., Litasov K.D., 2023. The Equilibrium Boundary of the Reaction Mg3Al2Si3O12+3CO2=Al2SiO5+2SiO2+3MgCO3 at 3–6 GPa. AMERICAN MINERALOGIST https://doi.org/10.2138/am-2022-8696

  • Shatskiy A., Vinogradova Yu.G., Arefiev A.V., Litasov K.D., 2023. Revision of the CaMgSi2O6−CO2 P-T Phase Diagram at 3–6 GPa. AMERICAN MINERALOGIST https://doi.org/10.2138/am-2022-8588
  • Shatskiy A.F., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2023. The NaCl–CaCO3–MgCO3 System at 3 GPa: Implications for Mantle Solidi. RUSSIAN GEOLOGY AND GEOPHYSICS 64(8), 932–949. https://doi.org/10.2113/RGG20234587
  • Shatskiy A.F., Podborodnikov I.V., Fedoraeva A.S., Arefiev A.V., Bekhtenova A., Litasov K.D., 2023. The NaCl–CaCO3 and NaCl–MgCO3 Systems at 6 GPa: Link between Saline and Carbonatitic Diamond Forming Melts. AMERICAN MINERALOGIST 108(4), 709–718. https://doi.org/10.2138/am-2022-8403
  • Arefiev A.V., Shatskiy A.F., Bekhtenova A., Litasov K.D., 2023. Phonolite-Carbonatite Liquid Immiscibility at 3–6 GPa. MINERALS 13, 443. https://doi.org/10.3390/min13030443
  • Shatskiy A.F., Vinogradova Yu.G., Arefiev A.V., Litasov K.D., 2023. The System NaAlSi2O6‒CaMgSi2O6−CO2 at 3–6.5 GPa: Implications for CO2 Stability in the Eclogitic Suite at Depths of 100–200 km. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY 178, 22. https://doi.org/10.1007/s00410-023-01999-w
  • Semerikova A., Chanyshev A.D., Glazyrin K., Pakhomova A., Kurnosov A., Litasov K.D., Dubrovinsky L., Fedotenko T., Koemets E., Rashchenko S., 2023. Does It “Rain” Diamonds on Neptune and Uranus? ACS EARTH AND SPACE CHEMISTRY 7(3), 582–588. https://doi.org/10.1021/acsearthspacechem.2c00343
  • Sagatov N.E., Sagatova D.N., Gavryushkin P.N., Litasov K.D., 2023. New High-Pressure Structures of Transition Metal Carbonates with O3C–CO3 Orthooxalate Groups. SYMMETRY 15(2), 421. https://doi.org/10.3390/sym15020421
  • Shatskiy A.F., Bekhtenova A., Arefiev A.V., Litasov K.D., 2023. Melt Composition and Phase Equilibria in the Eclogite-Carbonate System at 6 GPa and 900–1500 °C. MINERALS 13(1), 82. https://doi.org/10.3390/min13010082
  • Shatskiy A.F., Arefiev A.V., Litasov K.D., 2023. Change in Carbonate Budget and Composition during Subduction below Metal Saturation Boundary. GEOSCIENCE FRONTIERS 14(1), 101463. https://doi.org/10.1016/j.gsf.2022.101463
  • Arefiev A.V., Shatskiy A.F., Bekhtenova A., Litasov K.D., 2022. Raman Study of Quench Products of Alkaline Carbonate Melt at 3 and 6 GPa: Link to the Pressure of Origin. JOURNAL OF RAMAN SPECTROSCOPY 53(12), 2110–2122. https://doi.org/10.1002/jrs.6438
  • Gavryushkin P.N., Martirosyan N.S., Rashchenko S.V., Sagatova D.N., Sagatov N.E., Semerikova A.I., Fedotenko T.V., Litasov K.D., 2022. The First Experimental Synthesis of Mg Orthocarbonate by the Reaction MgCO3+MgO=Mg2CO4 at Pressures of the Earth’s Lower Mantle. JETP LETTERS 116, 477–484. https://doi.org/10.1134/S0021364022601798
  • Arefiev A.V., Shatskiy A.F., Bekhtenova A., Litasov K.D., 2022. Quench Products of K-Cа-Mg Carbonate Melt at 3 and 6 GPa: Implications for Carbonatite Inclusions in Mantle Minerals. MINERALS 12(9), 1077. https://doi.org/10.3390/min12091077
  • Martirosyan N.S., Shatskiy A.F., Litasov K.D., Sharygin I.S., Yoshino T., 2022. Interaction of Carbonates with Peridotite Containing Iron Metal: Implications for Carbon Speciation in the Upper Mantle. LITHOS 428–429, 106817. https://doi.org/10.1016/j.lithos.2022.106817
  • Podborodnikov I.V., Shatskiy A.F., Arefiev A.V., Bekhtenova A., Litasov K.D., 2022. The systems KCl–CaCO3 and KCl–MgCO3 at 6 GPa. HIGH PRESSURE RESEARCH 42(3), 245–258. https://doi.org/10.1080/08957959.2022.2102426
  • Shatskiy A.F., Podborodnikov I.V., Arefiev A.V., Bekhtenova A., Litasov K.D., 2022. Genetic Link between Saline and Carbonatitic Mantle Fluids: The system NaCl-CaCO3-MgCO3±H2O±Fe at 6 GPa. GEOSCIENCE FRONTIERS 13(6), 101431. https://doi.org/10.1016/j.gsf.2022.101431
  • Sagatov N.E., Gavryushkin P.N., Bekker T., Litasov K.D., 2022. Ba3(BO3)2: The First Example of the Dynamic Disordering in Borate Crystal. PHYSICAL CHEMISTRY CHEMICAL PHYSICS 24, 16437–16441 https://doi.org/10.1039/D2CP01846BShatskiy A., Podborodnikov I.V., Arefiev A.V., Bekhtenova A., Litasov K.D., 2022. The System KCl−CaCO3−MgCO3 at 6 GPa: A Link between Saline and Carbonatitic Diamond-Forming Fluids. CHEMICAL GEOLOGY 604, 120931. https://doi.org/10.1016/j.chemgeo.2022.120931
  • Barbaro A., Nestola F., Pittarello L., Ferrière L., Murri M., Litasov K.D., Christ O., Alvaro M., Chiara Domeneghetti M., 2022. Characterization of Carbon Phases in Yamato 74123 Ureilite to Constrain the Meteorite Shock History. AMERICAN MINERALOGIST 107(3), 377–384. https://doi.org/10.2138/am-2021-7856
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2022. Towards Composition of Carbonatite Melts in Peridotitic Mantle. EARTH AND PLANETARY SCIENCE LETTERS 581, 117395. https://doi.org/10.1016/j.epsl.2022.117395
  • Shatskiy A., Bekhtenova A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2022. Slab-Derived Melts Interacting with Peridotite: Toward the Origin of Diamond-Forming Melts. LITHOS 412–413, 106615. https://doi.org/10.1016/j.lithos.2022.106615
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Vinogradova Y.G., Litasov K.D., 2022. Solidus of Carbonated Phlogopite Eclogite at 3–6 GPa: Implications for Mantle Metasomatism and Ultra-High Pressure Metamorphism. GONDWANA RESEARCH 103, 188–204. https://doi.org/10.1016/j.gr.2021.10.016
  • Bekker T.B., Podborodnikov I.V., Sagatov N.E., Shatskiy A., Rashchenko S., Sagatova D.N., Davydov A., Litasov K.D., 2022. γ-BaB2O4: High-Pressure High-Temperature Polymorph of Barium Borate with Edge-Sharing BO4 Tetrahedra. INORGANIC CHEMISTRY 61(4), 2340–2350. https://doi.org/10.1021/acs.inorgchem.1c03760
  • Bekker T.B., Sagatov N.E., Podborodnikov I.V., Shatskiy A.F., Rashchenko S., Goryainov S.V., Davydov A., Litasov K.D., 2022. High-Pressure Synthesis, Electronic Properties, and Raman Spectroscopy of Barium Tetraborate BaB4O7 Polymorphs. CRYSTAL GROWTH AND DESIGN 22(5), 3405–3412. https://doi.org/10.1021/acs.cgd.2c00211
  • Shatskiy A., Bekhtenova A., Arefiev A.V., Podborodnikov I.V., Vinogradova Y.G., Rezvukhin D.I., Litasov K.D., 2022. Solidus and Melting of Carbonated Phlogopite Peridotite at 3–6.5 GPa: Implications for Mantle Metasomatism. GONDWANA RESEARCH 101, 156–174. https://doi.org/10.1016/j.gr.2021.07.023
  • Sagatova D.N., Sagatov N.E., Gavryushkin P.N., Banaev M.V., Litasov K.D., 2021. Alkali Metal (Li, Na, and K) Orthocarbonates: Stabilization of sp3-Bonded Carbon at Pressures above 20 GPa. CRYSTAL GROWTH AND DESIGN 21(12), 6744–6751. https://doi.org/10.1021/acs.cgd.1c00652
  • Sagatov N.E., Sagatova D.N., Gavryushkin P.N., Litasov K.D., 2021. Fe-N System at High Pressures and Its Relevance to the Earth's Core Composition. CRYSTAL GROWTH AND DESIGN 21(11), 6101–6109. https://doi.org/10.1021/acs.cgd.1c00432
  • Sagatov N.E., Bekker T.B., Podborodnikov I.V., Litasov K.D., 2021. First-Principles Investigation of Pressure-Induced Structural Transformations of Barium Borates in the Bao-B2O3-BaF2 System in the Range of 0–10 GPa. COMPUTATIONAL MATERIALS SCIENCE 199, 110735. https://doi.org/110735. 10.1016/j.commatsci.2021.110735
  • Rashchenko S.V., Shatskiy A.F., Ignatov M.A., Arefiev A.V., Litasov K.D., 2021. High-Pressure Synthesis and Crystal Structure of Non-Centrosymmetric K2Ca3(CO3)4. CrystEngComm 23(38), 6675–6681. https://doi.org/10.1039/d1ce00882j
  • Sagatov N.E., Abuova A.U., Sagatova D.N., Gavryushkin P.N., Abuova F.U., Litasov K.D., 2021. Phase Relations, and Mechanical and Electronic Properties of Nickel Borides, Carbides, and Nitrides From: ab Initio Calculations. RSC ADVANCES 11(53), 33781–33787. https://doi.org/10.1039/d1ra06160g
  • Barbaro A., Domeneghetti M.C., Litasov K.D., Ferrière L., Pittarello L., Christ O., Lorenzon S., Alvaro M., Nestola F., 2021. Origin of Micrometer-Sized Impact Diamonds in Ureilites by Catalytic Growth Involving Fe-Ni-Silicide: The Example of Kenna Meteorite. GEOCHIMICA ET COSMOCHIMICA ACTA 309, 286–298. https://doi.org/10.1016/j.gca.2021.06.022
  • Vinogradova Y.G., Shatskiy A.F., Litasov K.D., 2021. Thermodynamic Analysis of Reactions of CO2 Fluid with Garnet and Clinopyroxene at 3–6 GPa. GEOCHEMISTRY INTERNATIONAL 59, 851–857. https://doi.org/10.1134/S0016702921080103
  • Gavryushkin P.N., Sagatova D.N., Sagatov N., Litasov K.D., 2021. Orthocarbonates of Ca, Sr, and Ba – The Appearance of sp3-Hybridized Carbon at a Low Pressure of 5 GPa and Dynamic Stability at Ambient Pressure. ACS EARTH AND SPACE CHEMISTRY 5(8), 1948–1957. https://doi.org/10.1021/acsearthspacechem.1c00084
  • Sagatova D.N., Shatskiy A.F., Sagatov N.E., Litasov K.D., 2021. Phase Relations in CaSiO3 System up to 100 GPa and 2500 K. GEOCHEMISTRY INTERNATIONAL 59, 791–800. https://doi.org/10.1134/S0016702921080073
  • Sagatova D.N., Shatskiy A.F., Gavryushkin P.N., Sagatov N.E., Litasov K.D., 2021. Stability of Ca2CO4- Pnma against the Main Mantle Minerals from Ab Initio Computations. ACS EARTH AND SPACE CHEMISTRY 5(7), 1709–1715. https://doi.org/10.1021/acsearthspacechem.1c00065
  • Bekker T., Litasov K., Shatskiy A., Sagatov N., Podborodnikov I., Krinitsin P., 2021. Experimental and Ab Initio Investigation of the Formation of Phosphoran Olivine. ACS EARTH AND SPACE CHEMISTRY 5(6), 1373–1383. https://doi.org/10.1021/acsearthspacechem.1c00011
  • Bekhtenova A., Shatskiy A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2021. Phase Relations in Carbonate Component of Carbonatized Eclogite and Peridotite along Subduction and Continental Geotherms. GONDWANA RESEARCH 94, 186–200. https://doi.org/10.1016/j.gr.2021.02.019
  • Gavryushkin P.N., Sagatova D.N., Sagatov N., Litasov K.D., 2021. Formation of Mg-Orthocarbonate through the Reaction MgCO3+MgO=Mg2CO4 at Earth's Lower Mantle P-T Conditions. CRYSTAL GROWTH AND DESIGN 21(5), 2986–2992. https://doi.org/10.1021/acs.cgd.1c00140
  • Shatskiy A., Podborodnikov I.V., Arefiev A.V., Bekhtenova A., Vinogradova Y.G., Stepanov K.M., Litasov K.D., 2021. Pyroxene-Carbonate Reactions in the CaMgSi2O6±NaAlSi2O6+MgCO3±Na2CO3±K2CO3 System at 3–6 GPa: Implications for Partial Melting of Carbonated peridotite. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY 176, 34. https://doi.org/10.1007/s00410-021-01790-9
  • Sagatov N.E., Bazarbek A.-D.B., Inerbaev T.M., Gavryushkin P.N., Akilbekov A.T., Litasov K.D., 2021. Phase Relations in the Ni-S System at High Pressures from ab Initio Computations. ACS EARTH AND SPACE CHEMISTRY 5(3), 596–603. https://doi.org/10.1021/acsearthspacechem.0c00328
  • Shatskiy A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2021. Effect of Water on Carbonate-Silicate Liquid Immiscibility in the System KAlSi3O8CaMgSi2O6-NaAlSi2O6-CaMg(CO3)2 at 6 GPa: Implications for Diamond-Forming Melts. AMERICAN MINERALOGIST 106(2), 165–173. https://doi.org/10.2138/am-2020-7551
  • Litasov K.D., Kagi H., Bekker T.B., Makino Y., Hirata T., Brazhkin V.V., 2021. Why Tolbachik Diamonds Cannot Be Natural. AMERICAN MINERALOGIST 106(1), 44–53. https://doi.org/10.2138/am-2020-7562
  • Gavryushkin P.N., Belonoshko A.B., Sagatov N., Sagatova D., Zhitova E., Krzhizhanovskaya M.G. Rečnik A. Alexandrov E.V. Medrish I.V. Popov Z.I. Litasov K.D., 2021. Metastable Structures of CaCO3 and Their Role in Transformation of Calcite to Aragonite and Postaragonite. CRYSTAL GROWTH AND DESIGN 21(1), 65–74. https://doi.org/10.1021/acs.cgd.0c00589
  • Semerikova A., Chanyshev A.D., Glazyrin K., Pakhomova A., Kurnosov A., Litasov K., Dubrovinsky L., Rashchenko S., 2020. Face-Centered Cubic Platinum Hydride and Phase Diagram of PtH. EUROPEAN JOURNAL OF INORGANIC CHEMISTRY 2020(48), 4532–4538. https://doi.org/10.1002/ejic.202000849
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2020. Carbonate melt interaction with natural eclogite at 6 GPa and 1100–1200 °C: Implications for Metasomatic Melt Composition in Subcontinental Lithospheric Mantle. CHEMICAL GEOLOGY 558, 119915. https://doi.org/10.1016/j.chemgeo.2020.119915
  • Gavryushkin P.N., Sagatov N., Belonoshko A.B., Banaev M.V., Litasov K.D., 2020. Disordered Aragonite: The New High-Pressure, High-Temperature Phase of CaCO3. JOURNAL OF PHYSICAL CHEMISTRY C 124(48), 26467–26473. https://doi.org/10.1021/acs.jpcc.0c08309
  • Litasov K.D., Bekker T.B., Sagatov N.E., Gavryushkin P.N., Krinitsyn P.G., Kuper K.E., 2020. (Fe,Ni)2P Allabogdanite Can Be an Ambient Pressure Phase in Iron Meteorites. SCIENTIFIC REPORTS 10(1), 8956. https://doi.org/10.1038/s41598-020-66039-0
  • Inerbaev T.M., Sagatov N., Sagatova D., Gavryushkin P.N., Akilbekov A.T., Litasov K.D., 2020. Phase Stability in Nickel Phosphides at High Pressures. ACS EARTH AND SPACE CHEMISTRY 4(11), 1978–1984. https://doi.org/10.1021/acsearthspacechem.0c00181
  • Shatskiy A., Bekhtenova A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., 2020. Metasomatic Interaction of the Eutectic Na- and K-Bearing Carbonate Melts with Natural Garnet Lherzolite at 6 GPa and 1100–1200 °C: Toward Carbonatite Melt Composition in SCLM. LITHOS 374–375, 105725. https://doi.org/10.1016/j.lithos.2020.105725
  • Nestola F., Goodrich C.A., Morana M., Barbaro A., Jakubek R.S., Christ O., Brenker F.E., Domeneghetti M.C., Dalconi M.C., Alvaro M., Fioretti A.M., Litasov K.D. et al., 2020. Impact Shock Origin of Diamonds in Ureilite Meteorites. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA 117(41), 25310–25318. https://doi.org/10.1073/pnas.1919067117
  • Sagatova D., Shatskiy A., Sagatov N., Gavryushkin P.N., Litasov K.D., 2020. Calcium Orthocarbonate, Ca2CO4-Pnma: A Potential Host for Subducting Carbon in the Transition Zone and Lower Mantle. LITHOS 370–371, 105637. https://doi.org/10.1016/j.lithos.2020.105637
  • Bekker T.B., Inerbaev T.M., Yelisseyev A.P., Solntsev V.P., Rashchenko S.V., Davydov A.V., Shatskiy A.F., Litasov K.D., 2020. Experimental and Ab Initio Studies of Intrinsic Defects in "antizeolite" Borates with a Ba12(BO3)66+Framework and Their Influence on Properties. INORGANIC CHEMISTRY 59(18), 13598–13606. https://doi.org/10.1021/acs.inorgchem.0c01966
  • Shatskiy A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2020. Liquid Immiscibility and Phase Relations in the System KAlSi3O8-CaMg(CO3)2±NaAlSi2O6±Na2CO3 at 6 GPa: Implications for Diamond-Forming Melts. CHEMICAL GEOLOGY 550, 119701. https://doi.org/10.1016/j.chemgeo.2020.119701
  • Bekker T.B., Litasov K.D., Shatskiy A.F., Sagatov N.E., Krinitsin P.G., Krasheninnikov S.P., Podborodnikov I.V., Rashchenko S.V., Davydov A.V., Ohfuji H., 2020. Towards the Investigation of Ternary Compound in the Ti-Al-Zr-O System: Effect of Oxygen Fugacity on Phase Formation. JOURNAL OF THE EUROPEAN CERAMIC SOCIETY 40(10), 3663–3672. https://doi.org/10.1016/j.jeurceramsoc.2020.03.068
  • Gavryushkin P.N., Sagatov N., Sagatova D., Banaev M.V., Donskikh K.G., Litasov K.D., 2020. The Search for the New Superconductors in the Ni-N System. JOURNAL OF PHYSICS: CONFERENCE SERIES 1590(1), 012010. https://doi.org/10.1088/1742-6596/1590/1/012010
  • Bulatov K.M., Semenov A.N., Bykov A.A., Machikhin A.S., Litasov K.D., Zinin P.V., Rashchenko S.V., 2020. Measurement of Thermal Conductivity in Laser-Heated Diamond Anvil Cell Using Radial Temperature Distribution. HIGH PRESSURE RESEARCH 40(3), 315–324. https://doi.org/10.1080/08957959.2020.1763334
  • Sagatov N.E., Gavryushkin P.N., Banayev M.V., Inerbaev T.M., Litasov K.D., 2020. Phase Relations in the Fe-P System at High Pressures and Temperatures from Ab Initio Computations. HIGH PRESSURE RESEARCH 40(2), 235–244. https://doi.org/10.1080/08957959.2020.1740699
  • Afanas’ev V.P., Litasov K.D., Goryainov S.V., Kovalevskii V.V., 2020. Raman Spectroscopy of Nanopolycrystalline Diamond Produced from Shungite at 15 GPa and 1600 °C. JETP LETTERS 111, 218–224. https://doi.org/10.1134/S0021364020040050
  • Litasov K.D., Bekker T.B., Kagi H., Ohfuji H., 2020. Reply to the Comment on “Comparison of Enigmatic Diamonds from the Tolbachik Arc Volcano (Kamchatka) and Tibetan Ophiolites: Assessing the Role of Contamination by Synthetic Materials” by Litasov et al. (2019) (Gondwana research, 75, 16–27) by Yang et al. GONDWANA RESEARCH 79, 304–307. https://doi.org/10.1016/j.gr.2019.09.011
  • Sagatova D.N., Gavryushkin P.N., Sagatov N.E., Medrish I.V., Litasov K.D., 2020. Phase Diagrams of Iron Hydrides at Pressures of 100–400 GPa and Temperatures of 0–5000 K. JETP LETTERS 111, 145–150. https://doi.org/10.1134/S0021364020030108
  • Bazhan I.S., Litasov K.D., Badyukov D.D., 2020. High-Pressure Phases in the Dhofar 922 L6 Chondrite: Crystallization of Olivine-Ringwoodite Aggregates and Jadeite from Melt. RUSSIAN GEOLOGY AND GEOPHYSICS 61(3), 241–249. https://doi.org/10.15372/RGG2019072
  • Litasov K.D., Bekker T.B., Kagi H., 2020. “Kamchatite” Diamond Aggregate from Northern Kamchatka, Russia: New Find of Diamond Formed by Gas Phase Condensation or Chemical Vapor Deposition – Discussion. AMERICAN MINERALOGIST 105(1), 141–143. https://doi.org/10.2138/am-2020-7182
  • Litasov K.D., Bekker T.B., Kagi H., 2019. Reply to the Discussion of “Enigmatic Super-Reduced Phases in Corundum from Natural Rocks: Possible Contamination from Artificial Abrasive Materials or Metallurgical Slags” by Litasov et al. (Lithos, 340–341, 181–190) by W.L. Griffin, V. Toledo and S.Y. O'Reilly. LITHOS 348–349, 105170. https://doi.org/10.1016/j.lithos.2019.105170
  • Shatskiy A., Arefiev A.V., Podborodnikov I.V., Litasov K.D., 2019. Origin of K-Rich Diamond-Forming Immiscible Melts and CO2 Fluid via Partial Melting of Carbonated Pelites at a Depth of 180–200 km. GONDWANA RESEARCH 75, 154–171. https://doi.org/10.1016/j.gr.2019.05.004
  • Litasov K.D., Kagi H., Voropaev S.A., Hirata T., Ohfuji H., Ishibashi H., Makino Y., Bekker T.B. et al., 2019. Comparison of Enigmatic Diamonds from the Tolbachik Arc Volcano (Kamchatka) and Tibetan Ophiolites: Assessing the Role of Contamination by Synthetic Materials. GONDWANA RESEARCH 75, 16–27. https://doi.org/10.1016/j.gr.2019.04.007
  • Gavryushkin P.N., Bekhtenova A., Lobanov S.S., Shatskiy A., Likhacheva A.Y., Sagatova D., Sagatov N., Rashchenko S.V., Litasov K.D. et al., 2019. High-Pressure Phase Diagrams of Na2CO3 and K2CO3. MINERALS 9(10), 599. https://doi.org/10.3390/min9100599
  • Litasov K.D., Shatskiy A.F., Minin D.A., Kuper K.E., Ohfuji H., 2019. The Ni–Ni2P Phase Diagram at 6 GPa with Implication to Meteorites and Super-Reduced Terrestrial Rocks. HIGH PRESSURE RESEARCH 39(4), 561–578. https://doi.org/10.1080/08957959.2019.1672677
  • Fedoraeva A.S., Shatskiy A., Litasov K.D., 2019. The Join CaCO3-CaSiO3 at 6 GPa with Implication to Ca-Rich Lithologies Trapped by Kimberlitic Diamonds. HIGH PRESSURE RESEARCH 39(4), 547–560. https://doi.org/10.1080/08957959.2019.1660325
  • Litasov K.D., Kagi H., Bekker T.B., 2019. Enigmatic Super-Reduced Phases in Corundum from Natural Rocks: Possible Contamination from Artificial Abrasive Materials or Metallurgical Slags. LITHOS 340, 181–190. https://doi.org/10.1016/j.lithos.2019.05.013
  • Arefiev A.V., Podborodnikov I.V., Shatskiy A.F., Litasov K.D., 2019. Synthesis and Raman Spectra of K–Ca Double Carbonates: K2Ca(CO3)2 Bütschliite, Fairchildite, and K2Ca2(CO3)3 at 1 Atm. GEOCHEMISTRY INTERNATIONAL 57, 981–987. https://doi.org/10.1134/S0016702919090039
  • Litasov K.D., Shatskiy A.F., 2019. MgCO3+SiO2 Reaction at Pressures up to 32 GPa Studied Using In-Situ X-Ray Diffraction and Synchrotron Radiation. GEOCHEMISTRY INTERNATIONAL 57, 1024–1033. https://doi.org/10.1134/S0016702919090064
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Litasov K.D., 2019. The K2CO3–CaCO3–MgCO3 System at 6 GPa: Implications for Diamond Forming Carbonatitic Melts. MINERALS 9(9), 558. https://doi.org/10.3390/min9090558
  • Arefiev A.V., Litasov K.D., Shatskiy A., Greaux S., Irifune T., 2019. Experimental Evidence for High-Pressure Transformation of Merrillite and Na-Bearing Phosphates. Proceedings of the 82nd Annual Meeting of The Meteoritical Society 2157, 6126.
  • Litasov K.D., Sano Y., Takahata N., Miki T., Teplyakova S.N., Skripnik A.Y., 2019. U-Pb and Pb-Pb Dating of the Apatite from IAB Iron Meteorites. Proceedings of the 82nd Annual Meeting of The Meteoritical Society (2157), 6125.
  • Litasov K.D., Teplyakova S.N., Shatskiy A., Kuper K.E., 2019. Fe-Ni-PS Melt Pockets in Elga IIE Iron Meteorite: Evidence for the Origin at High-Pressures up to 20 GPa. MINERALS 9(10), 616. https://doi.org/10.3390/min9100616
  • Litasov K.D., Badyukov D.D., 2019. Raman Spectroscopy of High-Pressure Phases in Shocked L6 Chondrite NWA 5011. GEOCHEMISTRY INTERNATIONAL 57, 912–922. https://doi.org/10.1134/S001670291908007X
  • Martirosyan N.S., Litasov K.D., Lobanov S.S., Goncharov A.F., Shatskiy A., Ohfuji H., Prakapenka V., 2019. The Mg-Carbonate–Fe Interaction: Implication for the Fate of Subducted Carbonates and Formation of Diamond in the Lower Mantle. GEOSCIENCE FRONTIERS 10(4), 1449–1458. https://doi.org/10.1016/j.gsf.2018.10.003
  • Ponomarev D.S., Litasov K.D., Ishikawa A., Bazhan I.S., Hirata T., Podgornykh N.M., 2019. The Maslyanino Iron Meteorite with Silicate Inclusions: Mineralogical and Geochemical Study and Classification Signatures. RUSSIAN GEOLOGY AND GEOPHYSICS 60(7), 752–767. https://doi.org/10.15372/RGG2019055
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Bekhtenova A., Litasov K.D., 2019. New Data on the System Na2CO3–CaCO3–MgCO3 at 6 GPa with Implications to the Composition and Stability of Carbonatite Melts at the Base of Continental Lithosphere. CHEMICAL GEOLOGY 515, 50–60. https://doi.org/10.1016/j.chemgeo.2019.03.027
  • Litasov K.D., Kagi H., Bekker T.B., Hirata T., Makino Y., 2019. Cuboctahedral Type Ib Diamonds in Ophiolitic Chromitites and Peridotites: The Evidence for Anthropogenic Contamination. HIGH PRESSURE RESEARCH 39(3), 480–488. https://doi.org/10.1080/08957959.2019.1616183
  • Pokhilenko N.P., Shumilova T.G., Afanas’ev V.P., Litasov K.D., 2019. Diamonds in the Kamchatka peninsula (Tolbachik and Avacha volcanoes): Natural origin or contamination? RUSSIAN GEOLOGY AND GEOPHYSICS 60(5), 463–472. https://doi.org/10.15372/RGG2019024
  • Litasov K.D., Inerbaev T.M., Abuova F.U., Chanyshev A.D., Dauletbekova A.K., Akilbekov A.T., 2019. High-Pressure Elastic Properties of Polycyclic Aromatic Hydrocarbons Obtained by First-Principles Calculations. GEOCHEMISTRY INTERNATIONAL 57, 499–508. https://doi.org/10.1134/S0016702919050069
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Bekhtenova A., Litasov K.D., 2019. The System K2CO3–CaCO3–MgCO3 at 3 GPa: Implications for Carbonatite Melt Compositions in the Shallow Continental Lithosphere. MINERALS 9(5), 296. https://doi.org/10.3390/min9050296
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Litasov K.D., 2019. Phase Relations in the System Na2CO3–CaCO3–MgCO3 at 3 GPa with Implications for Carbonatite Genesis and Evolution. LITHOS 330, 74–89. https://doi.org/10.1016/j.lithos.2019.01.035
  • Litasov K.D., Ishikawa A., Kopylova A.G., Podgornykh N.M., Pokhilenko N.P., 2019. Mineralogy, Trace Element Composition, and Classification of Onello High-Ni Ataxite. DOKLADY EARTH SCIENCES 485, 381–385. https://doi.org/10.1134/S1028334X19040068
  • Nakamura E., Kunihiro T., Ota T., Sakaguchi C., Tanaka R., Kitagawa H., Kobayashi K., Yamanaka M., … Litasov K., 2019. Hypervelocity Collision and Water-Rock Interaction in Space Preserved in the Chelyabinsk Ordinary Chondrite. PROCEEDINGS OF THE JAPAN ACADEMY, SERIES B 95(4), 165–177. https://doi.org/10.2183/pjab.95.013
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Rashchenko S.V., Chanyshev A.D., Litasov K.D., 2019. The System K2CO3-CaCO3 at 3 GPa: Link between Phase Relations and Variety of K-Ca Double Carbonates at ≤0.1 and 6 GPa. PHYSICS AND CHEMISTRY OF MINERALS 46, 229–244. https://doi.org/10.1007/s00269-018-1000-z
  • Litasov K.D., Badyukov D.D., Pokhilenko N.P., 2019. Formation Parameters of High-Pressure Minerals in the Dhofar 717 and 864 Chondrite Meteorites. DOKLADY EARTH SCIENCES 485, 327–330. https://doi.org/10.1134/S1028334X19030322
  • Gavryushkin P.N., Rečnik A., Daneu N., Sagatov N., Belonoshko A.B., Popov Z.I., Ribic V., Litasov K.D., 2019. Temperature Induced Twinning in Aragonite: Transmission Electron Microscopy Experiments and Ab Initio Calculations. ZEITSCHRIFT FÜR KRISTALLOGRAPHIE-CRYSTALLINE MATERIALS 234(2), 79–84. https://doi.org/10.1515/zkri-2018-2109
  • Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T., 2019. Effect of Water on the Magnesite–Iron Interaction, with Implications for the Fate of Carbonates in the Deep Mantle. LITHOS 326, 435–445. https://doi.org/10.1016/j.lithos.2019.01.004
  • Sagatov N., Gavryushkin P.N., Inerbaev T.M., Litasov K.D., 2019. New High-Pressure Phases of Fe7N3 and Fe7C3 Stable at Earth’s Core Conditions: Evidences for Carbon–Nitrogen Isomorphism in Fe-Compounds. RSC ADVANCES 9(7), 3577–3581. https://doi.org/10.1039/C8RA09942A
  • Minin D.A., Shatskiy A.F., Litasov K.D., Ohfuji H., 2019. The Fe–Fe2P phase diagram at 6 GPa. HIGH PRESSURE RESEARCH 39(1), 50–68. https://doi.org/10.1080/08957959.2018.1562552
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Litasov K.D., 2019. Phase Relations in the System Na2CO3–CaCO3–MgCO3 at 3 GPa with Implications for Carbonatite Genesis and Evolution. LITHOS 330–331, 74–89. https://doi.org/10.1016/j.lithos.2019.01.035
  • Martirosyan N.S., Shatskiy A., Chanyshev A.D., Litasov K.D., Podborodnikov I.V., Yoshino T., 2019. Effect of Water on the Magnesite–Iron Interaction, with Implications for the Fate of Carbonates in the Deep Mantle. LITHOS 326–327, 435–445. https://doi.org/10.1016/j.lithos.2019.01.004
  • Gavryushkin P.N., Rečnik A., Daneu N., Sagatov N., Belonoshko A.B., Popov Z., Ribić V., Litasov K.D., 2019. Temperature Induced Twinning in Aragonite: Transmission Electron Microscopy Experiments and Ab Initio Calculations. ZEITSCHRIFT FUR KRISTALLOGRAPHIE – CRYSTALLINE MATERIALS 234(2), 79–84. https://doi.org/10.1515/zkri-2018-2109
  • Minin D.A., Shatskiy A.F., Litasov K.D., Ohfuji H., 2019. The Fe–Fe2P Phase Diagram at 6 GPa. HIGH PRESSURE RESEARCH 39(1), 50–68. https://doi.org/10.1080/08957959.2018.1562552
  • Sagatov N., Gavryushkin P.N., Inerbaev T.M., Litasov K.D., 2019. New High-Pressure Phases of Fe7N3 and Fe7C3 Stable at Earth’s Core Conditions: Evidences for Carbon-Nitrogen Isomorphism in Fe-Compounds. RSC ADVANCES 9(7), 3577–3581. https://doi.org/10.1039/C8RA09942A
  • Ohtani E., Yuan L., Ohira I., Shatskiy A., Litasov K., 2018. Fate of Water Transported into the Deep Mantle by Slab Subduction. JOURNAL OF ASIAN EARTH SCIENCES 167, 2–10. https://doi.org/10.1016/j.jseaes.2018.04.024
  • Romanenko A.V., Rashchenko S.V., Kurnosov A., Dubrovinsky L., Goryainov S.V., Likhacheva A.Y., Litasov K.D., 2018. Single-Standard Method for Simultaneous Pressure and Temperature Estimation Using Sm2+: SrB4O7 Fluorescence. JOURNAL OF APPLIED PHYSICS 124, 165902. https://doi.org/10.1063/1.5046144
  • Arefiev A.V., Shatskiy A., Podborodnikov I.V., Litasov K.D., 2018. Melting and Subsolidus Phase Relations in the System K2CO3–MgCO3 at 3 GPa. HIGH PRESSURE RESEARCH 38(4), 422–439. https://doi.org/10.1080/08957959.2018.1541988
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Rashchenko S.V., Chanyshev A.D., Litasov K.D., 2018. The System Na2CO3–CaCO3 at 3 GPa. PHYSICS AND CHEMISTRY OF MINERALS 45, 773–787. https://doi.org/10.1007/s00269-018-0961-2
  • Podborodnikov I.V., Shatskiy A., Arefiev A.V., Chanyshev A.D., Litasov K.D., 2018. The System Na2CO3–MgCO3 at 3 GPa. HIGH PRESSURE RESEARCH 38(3), 281–292. https://doi.org/10.1080/08957959.2018.1488972
  • Sokolova T.S., Dorogokupets P.I., Litasov K.D., Danilov B.S., Dymshits A.M., 2018. Spreadsheets to Calculate P-V-T Relations, Thermodynamic and Thermoelastic Properties of Silicates in the MgSiO3–MgO System. HIGH PRESSURE RESEARCH 38(3), 193–211. https://doi.org/10.1080/08957959.2018.1465056
  • Kolesnichenko M.V., Zedgenizov D.A., Ragozin A.L., Litasov K.D., Shatsky V.S., 2018. The Role of Eclogites in the Redistribution of Water in the Subcontinental Mantle of the Siberian Craton: Results of Determination of the Water Content in Minerals from the Udachnaya Pipe Eclogites. RUSSIAN GEOLOGY AND GEOPHYSICS 59(7), 763–779. https://doi.org/10.1016/j.rgg.2018.07.004
  • Chanyshev A.D., Litasov K.D., Rashchenko S.V., Sano-Furukawa A., Kag H., Hattori T., Shatskiy A.F., Dymshits A.M., Sharygin I.S., Higo Y., 2018. High-Pressure-High-Temperature Study of Benzene: Refined Crystal Structure and New Phase Diagram up to 8 GPa and 923 K. CRYSTAL GROWTH AND DESIGN 18(5), 3016–3026. https://doi.org/10.1021/acs.cgd.8b00125
  • Ivanov A.V., Mukasa S.B., Kamenetsky V.S., Ackerson M., Demonterova E.I., Pokrovsky B.G., Vladykin N.V., Kolesnichenko M.V., Litasov K.D., Zedgenizov D.A., 2018. Volatile Concentrations in Olivine-Hosted Melt Inclusions from Meimechite and Melanephelinite Lavas of the Siberian Traps Large Igneous Province: Evidence for Flux-Related High-Ti, High-Mg Magmatism. CHEMICAL GEOLOGY 483, 442–462. https://doi.org/10.1016/j.chemgeo.2018.03.011
  • Zhimulev E.I., Chepurov A.I., Sonin V.M., Litasov K.D., Chepurov A.A., 2018. Experimental Modeling of Percolation of Molten Iron through Polycrystalline Olivine Matrix at 2.0–5.5 GPa and 1600 °C. HIGH PRESSURE RESEARCH 38(2), 153–164. https://doi.org/10.1080/08957959.2018.1458847
  • Shatskiy A., Podborodnikov I.V., Arefiev A.V., Minin D.A., Chanyshev A.D., Litasov K.D., 2018. Revision of the CaCO3-MgCO3 Phase Diagram at 3 and 6 GPa. AMERICAN MINERALOGIST 103(3), 441–452. https://doi.org/10.2138/am-2018-6277
  • Gavryushkin P.N., Sagatov N., Popov Z.I., Bekhtenova A., Inerbaev T.M., Litasov K.D., 2018. Structure and Properties of New High-Pressure Phases of Fe7N3. JETP LETTERS 107, 379–383. https://doi.org/10.1134/S0021364018060061
  • Sharygin I.S., Shatskiy A., Litasov K.D., Golovin A.V., Ohtani E., Pokhilenko N.P., 2018. Interaction of Peridotite with Ca-Rich Carbonatite Melt at 3.1 and 6.5 GPa: Implication for Merwinite Formation in Upper Mantle, and for the Metasomatic Origin of Sublithospheric Diamonds with Ca-Rich Suite of Inclusions. CONTRIBUTIONS TO MINERALOGY AND PETROLOGY 173, 22. https://doi.org/10.1007/s00410-017-1432-3
  • Rashchenko S.V., Shatskiy A.F., Arefiev A.V., Seryotkin Y.V., Litasov K.D., 2018. Correction for ‘Na4Ca(CO3)3: A Novel Carbonate Analog of Borate Optical Materials’ by Sergey V. Rashchenko et al., CrystEngComm, 2018, 20, 5228–5232. CRYSTENGCOMM 40, 6358. https://doi.org/10.1039/c8ce90156b
  • Rashchenko S.V., Shatskiy A.F., Arefiev A.V., Seryotkin Y.V., Litasov K.D., 2018. Na4Ca(CO3)3: A Novel Carbonate Analog of Borate Optical Materials. CRYSTENGCOMM 20(35), 5228–5232. https://doi.org/10.1039/C8CE00745D
  • Litasov K.D., Ponomarev D.S., Bazhan I.S., Ishikawa A., Podgornykh N.M., Pokhilenko N.P., 2018. Altaite (PbTe) in the Maslyanino Iron Meteorite with Silicate Inclusions. DOKLADY EARTH SCIENCES 478, 79–81. https://doi.org/10.1134/S1028334X18010154
  • Dymshits A.M., Litasov K.D., Shatskiy A., Chanyshev A.D., Podborodnikov I.V., Higo Y., 2018. Phase Boundary between Cubic B1 and Rhombohedral Structures in (Mg,Fe)O Magnesiowüstite Determined by In Situ X-Ray Diffraction Measurements. PHYSICS AND CHEMISTRY OF MINERALS 45, 51–58. https://doi.org/10.1007/s00269-017-0901-6
  • Litasov K.D., Ishikawa A., Bazhan I.S., Ponomarev D.S., Hirata T., Podgornykh N.M., Pokhilenko N.P., 2018. Trace Element Composition and Classification of the Chinga Iron Meteorite. DOKLADY EARTH SCIENCES 478, 62–66. https://doi.org/10.1134/S1028334X18010063
  • Chanyshev A.D., Litasov K.D., Furukawa Y., Kokh K.A., Shatskiy A.F., 2017. Temperature-Induced Oligomerization of Polycyclic Aromatic Hydrocarbons at Ambient and High Pressures. SCIENTIFIC REPORTS 7(1), 7889. https://doi.org/10.1038/s41598-017-08529-2
  • Litasov K.D., Podgornykh N.M., 2017. Raman Spectroscopy of Various Phosphate Minerals and Occurrence of Tuite in the Elga IIE Iron Meteorite. JOURNAL OF RAMAN SPECTROSCOPY 48(11), 1518–1527. https://doi.org/10.1002/jrs.5119
  • Rashchenko S.V., Bakakin V.V., Shatskiy A.F., Gavryushkin P.N., Seryotkin Y.V., Litasov K.D., 2017. Noncentrosymmetric Na2Ca4(CO3)5 Carbonate of "m13 M23 XY3 Z" Structural Type and Affinity between Borate and Carbonate Structures for Design of New Optical Materials. CRYSTAL GROWTH AND DESIGN 17(11), 6079–6084. https://doi.org/10.1021/acs.cgd.7b01161
  • Zedgenizov D.A., Litasov K.D., 2017. Looking For “Missing” Nitrogen in the Deep Earth. AMERICAN MINERALOGIST 102(9), 1769–1770. https://doi.org/10.2138/am-2017-6218
  • Chanyshev A.D., Litasov K.D., Shatskiy A.F., Sharygin I.S., Higo Y., Ohtani E., 2017. Transition from Melting to Carbonization of Naphthalene, Anthracene, Pyrene and Coronene at High Pressure. PHYSICS OF THE EARTH AND PLANETARY INTERIORS 270, 29–39. https://doi.org/10.1016/j.pepi.2017.06.011
  • Shatskiy A., Podborodnikov I.V., Arefiev A.V., Litasov K.D., Chanyshev A.D., Sharygin I.S., Karmanov N.S., Ohtani E., 2017. Effect of Alkalis on the Reaction of Clinopyroxene with Mg-Carbonate at 6 GPa: Implications for Partial Melting of Carbonated Lherzolite. AMERICAN MINERALOGIST 102(9), 1934–1946. https://doi.org/10.2138/am-2017-6048
  • Lobanov S.S., Dong X., Martirosyan N.S., Samtsevich A.I., Stevanovic V., Gavryushkin P.N., Litasov K.D., Greenberg E. et al., 2017. Raman Spectroscopy and X-Ray Diffraction of sp3 CaCO3 at Lower Mantle Pressures. PHYSICAL REVIEW B 96(10), 104101. https://doi.org/10.1103/PhysRevB.96.104101
  • Likhacheva A.Y., Chanyshev A.D., Goryainov S.V., Rashchenko S.V., Litasov K.D., 2017. High-Pressure–High Temperature (HP-HT) Stability of Polytetrafluoroethylene: Raman Spectroscopic Study Up to 10 GPa and 600 ℃. APPLIED SPECTROSCOPY 71(8), 1842–1848. https://doi.org/10.1177/0003702817691529
  • Gavryushkin P.N., Litasov K.D., Dobrosmislov S.S., Popov Z.I., 2017. High-Pressure Phases of Sulfur: Topological Analysis and Crystal Structure Prediction. PHYSICA STATUS SOLIDI (B) BASIC RESEARCH 254(7), 1600857. https://doi.org/10.1002/pssb.201600857
  • Kolesnichenko M.V., Zedgenizov D.A., Litasov K.D., Safonova I.Y., Ragozin A.L., 2017. Heterogeneous Distribution of Water in the Mantle beneath the Central Siberian Craton: Implications from the Udachnaya Kimberlite Pipe. GONDWANA RESEARCH 47, 249–266. https://doi.org/10.1016/j.gr.2016.09.011
  • Bazhan I.S., Litasov K.D., Ohtani E., Ozawa S., 2017. Majorite-Olivine-High-CA Pyroxene Assemblage in the Shock-Melt Veins of Pervomaisky L6 Chondrite. AMERICAN MINERALOGIST 102(6), 1279–1286. https://doi.org/10.2138/am-2017-5892
  • Litasov K.D., Shatskiy A., Ponomarev D.S., Gavryushkin P.N., 2017. Equations of State of Iron Nitrides ε-Fe3 Nx and γ-Fe4 Ny to 30 GPa and 1200 K and Implication for Nitrogen in the Earth's Core. JOURNAL OF GEOPHYSICAL RESEARCH: SOLID EARTH 122(5), 3574–3584. https://doi.org/10.1002/2017JB014059
  • Shatskiy A., Litasov K.D., Sharygin I.S., Ohtani E., 2017. Composition of Primary Kimberlite Melt in a Garnet Lherzolite Mantle Source: Constraints from Melting Phase Relations in Anhydrous Udachnaya-East Kimberlite with Variable CO2 Content at 6.5 GPa. GONDWANA RESEARCH 45, 208–227. https://doi.org/10.1016/j.gr.2017.02.009
  • Sharygin I.S., Litasov K.D., Shatskiy A., Safonov O.G., Golovin A.V., Ohtani E., Pokhilenko N.P., 2017. Experimental Constraints on Orthopyroxene Dissolution in Alkali-Carbonate Melts in the Lithospheric Mantle: Implications for Kimberlite Melt Composition and Magma Ascent. CHEMICAL GEOLOGY 455, 44–56. https://doi.org/10.1016/j.chemgeo.2016.09.030
  • Bolotina N.B., Gavryushkin P.N., Korsakov A.V., Rashchenko S.V., Seryotkin Y.V., Golovin A.V., Moine B.N., Zaitsev A.N., Litasov K.D., 2017. Incommensurately modulated twin structure of nyerereite Na1.64K0.36Ca(CO3)2. ACTA CRYSTALLOGRAPHICA SECTION B 73(2), 276–284. https://doi.org/10.1107/S2052520616020680
  • Litasov K.D., Shatskiy A., Gavryushkin P.N., Bekhtenova A.E., Dorogokupets P.I., Danilov B.S., Higo Y., Akilbekov A.T., Inerbaev T.M., 2017. P-V-T Equation of State of CaCO3 Aragonite to 29 GPa and 1673 K: In Situ X-Ray Diffraction Study. PHYSICS OF THE EARTH AND PLANETARY INTERIORS 265, 82–91. https://doi.org/10.1016/j.pepi.2017.02.006
  • Dorogokupets P.I., Dymshits A.M., Litasov K.D., Sokolova T.S., 2017. Thermodynamics and Equations of State of Iron to 350 GPa and 6000 K. SCIENTIFIC REPORTS 7, 41863. https://doi.org/10.1038/srep41863
  • Ohfuji H., Nakaya M., Yelisseyev A.P., Afanasiev V.P., Litasov K.D., 2017. Mineralogical and Crystallographic Features of Polycrystalline Yakutite Diamond. JOURNAL OF MINERALOGICAL AND PETROLOGICAL SCIENCES 112(1), 46–51. https://doi.org/10.2465/jmps.160719g
  • Bazhan I.S., Ozawa S., Miyahara M., Ohtani E., Litasov K.D., 2017. “Spherulite-Like” Jadeite Growth in Shock-Melt Veins of the Novosibirsk H5/6 Chondrite. RUSSIAN GEOLOGY AND GEOPHYSICS 58(1), 12–19. https://doi.org/10.1016/j.rgg.2016.04.012
  • Gavryushkin P.N., Martirosyan N.S., Inerbaev T.M., Popov Z.I., Rashchenko S.V., Likhacheva A.Yu., Lobanov S.S., Goncharov A.F., Prakapenka V.B., Litasov K.D., 2017. Aragonite-II and CaCO3-VII: New high-pressure, high-temperature polymorphs of CaCO3. CRYSTAL GROWTH AND DESIGN 17(12), 6291–6296. https://doi.org/10.1021/acs.cgd.7b00977
  • Gavryushkin P.N., Rashenko S.V., Shatskiy A.F., Litasov K.D., Ancharov A.I., 2016. Compressibility and Phase Transitions of Potassium Carbonate at Pressures below 30 Kbar. JOURNAL OF STRUCTURAL CHEMISTRY 57, 1485–1488. https://doi.org/10.1134/S0022476616070258
  • Chanyshev A.D., Likhacheva A.Y., Gavryushkin P.N., Litasov K.D., 2016. Compressibility, Phase Transitions and Amorphization of Coronene at Pressures up to 6 GPa. JOURNAL OF STRUCTURAL CHEMISTRY 57, 1489–1492. https://doi.org/10.1134/S002247661607026X
  • Malkovets V.G., Rezvukhin D.I., Belousova E.A., Griffin W.L., Sharygin I.S., Tretiakova I.G., Gibsher A.A., O'Reilly S.Y., Kuzmin D.V., Litasov K.D. et al., 2016. Cr-Rich Rutile: A Powerful Tool for Diamond Exploration. LITHOS 265, 304–311. https://doi.org/10.1016/j.lithos.2016.08.017
  • Rashchenko S.V., Kamada S., Hirao N., Litasov K.D., Ohtani E., 2016. In Situ X-Ray Observation of 10 Å Phase Stability at High Pressure. AMERICAN MINERALOGIST 101(11), 2564–2569. https://doi.org/10.2138/am-2016-5764
  • Gavryushkin P.N., Behtenova A., Popov Z.I., Bakakin V.V., Likhacheva A.Y., Litasov K.D., Gavryushkin A., 2016. Toward Analysis of Structural Changes Common for Alkaline Carbonates and Binary Compounds: Prediction of High-Pressure Structures of Li2CO3, Na2CO3, and K2CO3. CRYSTAL GROWTH AND DESIGN 16(10), 5612–5617. https://doi.org/10.1021/acs.cgd.5b01793
  • Litasov K.D., Shatskiy A.F., Ohtani E., 2016. Interaction of Fe and Fe3C with Hydrogen and Nitrogen at 6–20 GPa: A Study by in Situ X-Ray Diffraction. GEOCHEMISTRY INTERNATIONAL 54, 914–921. https://doi.org/10.1134/S0016702916100074
  • Martirosyan N.S., Yoshino T., Shatskiy A., Chanyshev A.D., Litasov K.D., 2016. The CaCO3–Fe Interaction: Kinetic Approach for Carbonate Subduction to the Deep Earth’s Mantle. PHYSICS OF THE EARTH AND PLANETARY INTERIORS 259, 1–9. https://doi.org/10.1016/j.pepi.2016.08.008
  • Sokolova T.S., Dorogokupets P.I., Dymshits A.M., Danilov B.S., Litasov K.D., 2016. Microsoft Excel Spreadsheets for Calculation of P-V-T Relations and Thermodynamic Properties from Equations of State of MgO, Diamond and Nine Metals as Pressure Markers in High-Pressure and High-Temperature Experiments. COMPUTERS AND GEOSCIENCES 94, 162–169. https://doi.org/10.1016/j.cageo.2016.06.002
  • Gavryushkin P.N., Popov Z.I., Litasov K.D., Belonoshko A.B., Gavryushkin A., 2016. Stability of B2-Type FeS at Earth's Inner Core Pressures. GEOPHYSICAL RESEARCH LETTERS 43(16), 8435–8440. https://doi.org/10.1002/2016GL069374
  • Dymshits A.M., Dorogokupets P.I., Sharygin I.S., Litasov K.D., Shatskiy A., Rashchenko S.V., Ohtani E., Suzuki A., Higo Y., 2016. Thermoelastic Properties of Chromium Oxide Cr2O3 (Eskolaite) At High Pressures and Temperatures. PHYSICS AND CHEMISTRY OF MINERALS 43, 447–458. https://doi.org/10.1007/s00269-016-0808-7
  • Gavryushkin P.N., Thomas V.G., Bolotina N.B., Bakakin V.V., Golovin A.V., Seryotkin Y.V., Fursenko D.A., Litasov K.D., 2016. Hydrothermal Synthesis and Structure Solution of Na2Ca(CO3)2: "Synthetic Analogue" of Mineral Nyerereite. CRYSTAL GROWTH AND DESIGN 16(4), 1893–1902. https://doi.org/10.1021/acs.cgd.5b01398
  • Likhacheva A.Y., Goryainov S.V., Seryotkin Y.V., Litasov K.D., Momma K., 2016. Raman Spectroscopy of Chibaite, Natural MTN Silica Clathrate, at High pressure up to 8 GPa. MICROPOROUS AND MESOPOROUS MATERIALS 224, 100–106. https://doi.org/10.1016/j.micromeso.2015.11.033
  • Huang X., Li F., Zhou Q., Meng Y., Litasov K.D., Wang X., Liu B., Cui T., 2016. Thermal Equation of State of Molybdenum Determined from in Situ Synchrotron X-Ray Diffraction with Laser-Heated Diamond Anvil Cells. SCIENTIFIC REPORTS 6, 19923. https://doi.org/10.1038/srep19923
  • Rezvukhin D.I., Malkovets V.G., Sharygin I.S., Kuzmin D.V., Gibsher A.A., Litasov K.D., Pokhilenko N.P., Sobolev N.V., 2016. Inclusions of Crichtonite Group Minerals in Pyropes from the Internatsionalnaya Kimberlite Pipe, Yakutia. DOKLADY EARTH SCIENCES 466, 206–209. https://doi.org/10.1134/S1028334X16020227
  • Rezvukhin D.I., Malkovets V.G., Sharygin I.S., Kuzmin D.V., Litasov K.D., Gibsher A.A., Pokhilenko N.P., Sobolev N.V., 2016. Inclusions of Cr- and Cr–Nb-Rutile in Pyropes from the Internatsionalnaya Kimberlite Pipe, Yakutia. DOKLADY EARTH SCIENCES 466, 173–176. https://doi.org/10.1134/S1028334X1602015X
  • Shatskiy A., Litasov K.D., Sharygin I.S., Egonin I.A., Mironov A.M., Palyanov Y.N., Ohtani E., 2016. The System Na2CO3-CaCO3-MgCO3 at 6 GPa and 900–1250 °C and Its Relation to the Partial Melting of Carbonated Mantle. HIGH PRESSURE RESEARCH 36(1), 23–41. https://doi.org/10.1080/08957959.2015.1135916
  • Dorogokupets P.I., Sokolova T.S., Dymshits A.M., Litasov K.D., 2016. Thermodynamic Properties of Rock-Forming Oxides, α-Al2O3, Cr2O3, α-Fe2O3, and Fe3O4 at High Temperatures and Pressures. GEODYNAMICS & TECTONOPHYSICS 7(3), 459–476. https://doi.org/10.5800/GT-2016-7-3-0217
  • Shatskiy A., Litasov K.D., Palyanov Y.N., Ohtani E., 2016. Phase Relations on the K2CO3-CaCO3-MgCO3 Join at 6 GPa and 900–1400 °C: Implications for Incipient Melting in Carbonated Mantle Domains. AMERICAN MINERALOGIST 101(2), 437–447. https://doi.org/10.2138/am-2016-5332
  • Rashchenko S.V., Likhacheva A.Y., Goryainov S.V., Krylov A.S., Litasov K.D., 2016. In Situ Spectroscopic Study of Water Intercalation into Talc: New Features of 10 Å Phase Formation. AMERICAN MINERALOGIST 101(2), 431–436. https://doi.org/10.2138/am-2016-5356
  • Litasov K.D., Shatskiy A.F., 2016. Composition of the Earth's Core: A Review. RUSSIAN GEOLOGY AND GEOPHYSICS 57(1), 22–46. https://doi.org/10.1016/j.rgg.2016.01.003
  • Belonoshko A.B., Lukinov T., Rosengren A., Bryk T., Litasov K.D., 2015. Synthesis of Heavy Hydrocarbons at the Core-Mantle Boundary. SCIENTIFIC REPORTS 5, 18382. https://doi.org/10.1038/srep18382
  • Shatskiy A., Gavryushkin P.N., Litasov K.D., Koroleva O.N., Kupriyanov I.N., Borzdov Y.M., Sharygin I.S., Funakoshi K., Palyanov Y.N., Ohtani E., 2015. Na-Ca Carbonates Synthesized under Upper-Mantle Conditions: Raman Spectroscopic and X-Ray Diffraction Studies. European JOURNAL OF MINERALOGY 27(2), 175–184. https://doi.org/10.1127/ejm/2015/0027-2426
  • Safonova I., Maruyama S., Litasov K., 2015. Generation of Hydrous-Carbonated Plumes in the Mantle Transition Zone Linked to Tectonic Erosion and Subduction. TECTONOPHYSICS 662, 454–471. https://doi.org/10.1016/j.tecto.2015.08.005
  • Sharygin I.S., Litasov K.D., Shatskiy A., Golovin A.V., Ohtani E., Pokhilenko N.P., 2015. Melting Phase Relations of the Udachnaya-East Group-I Kimberlite at 3.0–6.5GPa: Experimental Evidence for Alkali-Carbonatite Composition of Primary Kimberlite Melts and Implications for Mantle Plumes. GONDWANA RESEARCH 28(4), 1391–1414. https://doi.org/10.1016/j.gr.2014.10.005
  • Ohfuji H., Irifune T., Litasov K.D., Yamashita T., Isobe F., Afanasiev V.P., Pokhilenko N.P., 2015. Natural Occurrence of Pure Nano-Polycrystalline Diamond from Impact Crater. SCIENTIFIC REPORTS 5, 14702. https://doi.org/10.1038/srep14702
  • Martirosyan N.S., Litasov K.D., Shatskiy A.F., Ohtani E., 2015. Reactions of Iron with Calcium Carbonate at 6 GPa and 1273–1873 K: Implications for Carbonate Reduction in the Deep Mantle. RUSSIAN GEOLOGY AND GEOPHYSICS 56(9), 1322–1331. https://doi.org/10.1016/j.rgg.2015.08.008
  • Safonova I., Litasov K., Maruyama S., 2015. Triggers and Sources of Volatile-Bearing Plumes in the Mantle Transition Zone. GEOSCIENCE FRONTIERS 6(5), 679–685. https://doi.org/10.1016/j.gsf.2014.11.004
  • Yelisseyev A., Khrenov A., Afanasiev V., Pustovarov V., Gromilov S., Panchenko A., Pokhilenko N., Litasov K., 2015. Luminescence of Natural Carbon Nanomaterial: Impact Diamonds from the Popigai Crater. DIAMOND AND RELATED MATERIALS 58, 69–77. https://doi.org/10.1016/j.diamond.2015.06.010
  • Chanyshev A.D., Litasov K.D., Shatskiy A.F., Ohtani E., 2015. In Situ X-Ray Diffraction Study of Decomposition of Polycyclic Aromatic Hydrocarbons at Pressures of 7–15GPa: Implication to Fluids under the Earth’s and Planetary Environments. CHEMICAL GEOLOGY 405, 39–47. https://doi.org/10.1016/j.chemgeo.2015.04.004
  • Gavryushkin P.N., Popov Z.I., Litasov K.D., Gavryushkin A., 2015. Unbiased Crystal Structure Prediction of NiSi under High Pressure. JOURNAL OF APPLIED CRYSTALLOGRAPHY 48, 906–908. https://doi.org/10.1107/S1600576715005488
  • Dobretsov N.L., Zedgenizov D.A., Litasov K.D., 2015. Evidence for and Consequences of the “Hot” Subduction Model. DOKLADY EARTH SCIENCES 462, 517–521. https://doi.org/10.1134/S1028334X15050190
  • Lobanov S.S., Goncharov A.F., Litasov K.D., 2015. Optical Properties of Siderite (FeCO3) Across the Spin Transition: Crossover to Iron-Rich Carbonates in the Lower Mantle. AMERICAN MINERALOGIST 100(5–6), 1059–1064. https://doi.org/10.2138/am-2015-5053
  • Litasov K.D., Rashchenko S.V., Shmakov A.N., Palyanov Y.N., Sokol A.G., 2015. Thermal Expansion of Iron Carbides, Fe7C3 and Fe3C, at 297–911 K Determined by In Situ X-Ray Diffraction. JOURNAL OF ALLOYS AND COMPOUNDS 628, 102–106. https://doi.org/10.1016/j.jallcom.2014.12.138
  • Rashchenko S.V., Kurnosov A., Dubrovinsky L., Litasov K.D., 2015. Revised Calibration of the Sm:SrB4O7 Pressure Sensor Using the Sm-Doped Yttrium-Aluminum Garnet Primary Pressure Scale. JOURNAL OF APPLIED PHYSICS 117(14), 145902. https://doi.org/10.1063/1.4918304
  • Popov Z.I., Litasov K.D., Gavryushkin P.N., Ovchinnikov S.G., Fedorov A.S., 2015. Theoretical Study of γ′-Fe4N and ɛ-FexN Iron Nitrides at Pressures up to 500 GPa. JETP LETTERS 101, 371–375. https://doi.org/10.1134/S0021364015060090
  • Dymshits A.M., Sharygin I.S., Podborodnikov I.V., Litasov K.D., Shatskiy A.F., Otani E., Pushcharovskii D.Y., 2015. Thermal Equation of State of NaMg0.5Si2.5O6 and New Data on the Compressibility of Clinopyroxenes. DOKLADY EARTH SCIENCES 461, 273–276. https://doi.org/10.1134/S1028334X15030113
  • Dymshits A. Sharygin I. Litasov K. Shatskiy A. Gavryushkin, P. Ohtani E. Suzuki A. Funakoshi K., 2015. In Situ Observation of the Pyroxene-Majorite Transition in Na2MgSi5O12 Using Synchrotron Radiation and Raman Spectroscopy of Na-Majorite. AMERICAN MINERALOGIST 100(2–3), 378–384. https://doi.org/10.2138/am-2015-4801
  • Martirosyan N.S., Litasov K.D., Shatskiy A., Ohtani E., 2015. The Reactions between Iron and Magnesite at 6 GPa and 1273–1873 K: Implication to Reduction of Subducted Carbonate in the Deep Mantle. JOURNAL OF MINERALOGICAL AND PETROLOGICAL SCIENCES 110(2), 49–59. https://doi.org/10.2465/jmps.141003a
  • Litasov K.D., Gavryushkin P.N., Yunoshev A.S., Rashchenko S.V., Inerbaev T.M., Akilbekov A.T., 2015. Thermal Expansion of Coronene C24H12 at 185–416 K. JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY 119, 1183–1189. https://doi.org/10.1007/s10973-014-4253-x
  • Shatskiy A.F., Litasov K.D., Palyanov Y., 2015. Phase Relations in Carbonate Systems at Pressures and Temperatures of Lithospheric Mantle: Review of Experimental Data. RUSSIAN GEOLOGY AND GEOPHYSICS 56(1–2), 113–142. https://doi.org/10.1016/j.rgg.2015.01.007
  • Dobretsov N.L., Koulakov I., Litasov K.D., Kukarina E.V., 2015. An Integrate Model of Subduction: Contributions from Geology, Experimental Petrology, and Seismic Tomography. RUSSIAN GEOLOGY AND GEOPHYSICS 56(1–2), 13–38. https://doi.org/10.1016/j.rgg.2015.01.002
  • Dorogokupets P.I., Dymshits A.M., Sokolova T.S., Danilov B.S., Litasov K.D., 2015. The Equations of State of Forsterite, Wadsleyite, Ringwoodite, Akimotoite, MgSiO3-Perovskite, and Postperovskite and Phase Diagram for the Mg2SiO4 System at Pressures of up to 130 GPa. RUSSIAN GEOLOGY AND GEOPHYSICS 56(1–2), 172–189. https://doi.org/10.1016/j.rgg.2015.01.011
  • Litasov K.D., Popov Z.I., Gavryushkin P.N., Ovchinnikov S.G., Fedorov A.S., 2015. First-Principles Calculations of the Equations of State and Relative Stability of Iron Carbides at the Earth’s Core Pressures. RUSSIAN GEOLOGY AND GEOPHYSICS 56(1–2), 164–171. https://doi.org/10.1016/j.rgg.2015.01.010
  • Sobolev N.V., Dobretsov N.L., Ohtani E., Taylor L.A., Schertl H.-P., Palyanov Y., Litasov K.D., 2015. Problems Related to Crystallogenesis and the Deep Carbon Cycle. RUSSIAN GEOLOGY AND GEOPHYSICS 56(1–2), 1–12. https://doi.org/10.1016/j.rgg.2015.01.001
  • Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite Metasomatism of Peridotite Lithospheric Mantle: Implications for Diamond Formation and Carbonatite-Kimberlite Magmatism. RUSSIAN GEOLOGY AND GEOPHYSICS 56(1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020
  • Chanyshev A.D., Litasov K.D., Shatskiy A.F., Furukawa Y., Yoshino T., Ohtani E., 2015. Oligomerization and Carbonization of Polycyclic Aromatic Hydrocarbons at High Pressure and Temperature. CARBON 84(1), 225–235. https://doi.org/10.1016/j.carbon.2014.12.011
  • Shatskiy A., Borzdov Y.M., Litasov K.D., Sharygin I.S., Palyanov Y.N., Ohtani E., 2015. Phase Relationships in the System K2CO3-CaCO3 at 6 GPa and 900–1450 °C. AMERICAN MINERALOGIST 100(1), 223–232. https://doi.org/10.2138/am-2015-5001
  • Shatskiy A., Rashchenko S.V., Ohtani E., Litasov K.D., Khlestov M.V., Borzdov Y.M., Kupriyanov I.N., Sharygin, I.S., Palyanov Y.N., 2015. The System Na2CO3-FeCO3 at 6 GPa and Its Relation to the System Na2CO3-FeCO3-MgCO3. AMERICAN MINERALOGIST 100(1), 130–137. https://doi.org/10.2138/am-2015-4777