Preview

Геодинамика и тектонофизика

Расширенный поиск
Том 7, № 3 (2016)

ТЕКТОНОФИЗИКА

347-381 624
Аннотация

Настоящая работа посвящена обсуждению строения геосреды, т.е. доступных для изучения литифицированных горных пород, и способов описания движения этой среды. В рамках обсуждаемых вопросов существуют два мнения: 1) изначально однородная сплошная геосреда приобретает свойство блочности в процессе ее деформирования (а также деструкции, деградации, разрушения) и 2) геосреда является блочной (а нередко, помимо этого, иерархической, активной, энергонасыщенной), и поэтому модель сплошности недопустима при описании ее деформирования. Сторонники первой точки зрения активно применяют стандартную или модифицированную континуальную модель твердого деформируемого тела (ТДТ) в расчетах напряженно-деформированного состояния, но входные параметры модели принципиально не содержат сведения о дискретности. Авторы, придерживающиеся второго мнения, явно или неявно полагают, что блочная структура геосреды, выявляемая геологическими методами, прямым и однозначным образом влияет на все ее иные механические свойства и, в первую очередь, на характер ее движения.

Опираясь на интерпретацию данных, полученных в ходе многолетних полевых исследований трещиноватости горных пород, математическую обработку результатов GPS-измерений и построенные теоретические модели, мы соглашаемся с тезисом о блочном строении геосреды, но утверждаем, что свойство геологической блочности является не приобретенным, а врожденным. В отношении осадочных горных пород это означает, что дискретная структура запечатлена в породе еще до момента ее зарождения из осадков (литификации) независимо от интенсивности макроскопических деформаций. Дискретная структура является формой существования геосреды и причиной врожденной анизотропии ее прочностных характеристик. При последующих деформациях геосреды те или иные элементы структуры выявляются четче, сама структура может обогатиться за счет вторичных эффектов.

В то же время структура геологических блоков не проявляется прямым образом в пространственно-временных особенностях современных движений геосреды и не служит препятствием к построению континуальных моделей этих движений подобно тому, как, например, дискретно-иерархическая структура Вселенной не отрицает адекватности континуальной общей теории относительности. Важнейшими требованиями к модели являются ее применимость и возможность подтверждения или опровержения ее предсказаний на исследуемом пространственно-временном масштабе, а также выполнение в рамках модели законов сохранения. В работе кратко рассматриваются важнейшие аспекты континуального подхода, использующего концепцию эффективной сплошной среды, и, в первую очередь, модель континуума Коши, в которой динамический отклик среды при пространственном описании задается единственным силовым симметричным тензором напряжений Коши T. В рамках более общих континуальных моделей среды (моментных, микрополярных, микроморфных и т.д.) динамику среды могут характеризовать несимметричные тензоры силовых и моментных напряжений.

В статье опровергается неоправданная критика континуальной модели, которая имеет своими корнями отождествление весьма частных предположений или способов постановки задач с общими принципами модели сплошности. Определенное внимание уделяется критике, высказываемой приверженцами концепции активной геосреды. Рассматриваются те действительные трудности, которые встречаются в модели сплошности при отсчетном описании среды с мобильными объемными дефектами, а также среды, деформирование которой происходит вследствие движений по структуре, иерархической на любом масштабном уровне вплоть до нулевого размера, в частности по фрактальной структуре. Обсуждается генезис некоторых типичных ошибок в геолого-геофизической литературе и причины возникновения благоприятных условий для того, чтобы в геологии воззрения Аристотеля и другие доньютоновские представления раз за разом возрождались и одерживали верх над идеями современной классической физики. Рассмотрена проблема реконструкции напряжений в геосреде по натурным кинематическим индикаторам, а именно по необратимым разрывным сдвигам. Обращается внимание на то, что в господствующем сейчас подходе авторы пытаются «навязать» геосреде некоторые априорные умозрительные правила связи искомых напряжений с кинематикой подвижек. В рамках такого подхода законы сохранения неизбежно игнорируются, что не дает возможности интерпретировать получаемые результаты в терминах напряжений. Альтернативный подход, предложенный ранее автором данной работы, позволяет с учетом законов сохранения не только реконструировать поле тензора напряжений, но и, дополнительно к этому, судить о реологии геосреды. В заключение статьи утверждается, что отвергать континуальный подход априори, ссылаясь на дискретность геосреды, по меньшей мере неконструктивно.

383-406 430
Аннотация

В кратком обзоре рассмотрена эволюция представлений специалистов, занимавшихся изучением причин и механизмов возникновения Байкальской рифтовой зоны (БРЗ) в центральной части Евразийской плиты, с 70-х годов прошлого столетия. С позиций эволюции этих представлений обсуждаются параметры современного сейсмогеодинамического воздействия на сейсмотектонический режим в пределах Байкальского рифта со стороны зон Западно-Тихоокеанской субдукции и Индо-Евразийской коллизии с целью оценить их вклад в современную геодинамику рифтогенных процессов в Прибайкалье. Проведены расчеты, основанные на анализе сейсмомиграционных процессов и распределения удельной плотности выделившейся сейсмической энергии в пределах двух выбранных профилей между БРЗ и областями коллизии и субдукции. С применением разработанного статистического метода пространственно-временных диаграмм охарактеризованы скорости сейсмомиграции и представлены уравнения спадания удельной плотности сейсмической энергии, выделившейся в литосфере при удалении от межплитных границ к Байкальскому рифту. Показано, что современное геодинамическое влияние на сейсмотектонический режим БРЗ со стороны Индо-Евразийской зоны коллизии в виде умеренного горизонтального сжатия литосферы распространяется преимущественно на юго-западный и отчасти на центральный район БРЗ. Удельная плотность сейсмической энергии на промежуточной территории по этому профилю составляет порядка 1.72×1010 Дж/км2. Геодинамическое влияние на сейсмичность БРЗ со стороны зоны субдукции от Нанкайского желоба имеет существенно мень- шее значение плотности высвобожденной сейсмической энергии – 1.02×1010 Дж/км2. В литосфере северо-восточного фланга БРЗ ослабленное геодинамическое влияние ощутимо проявляется преимущественно в откликах на сильные сейсмические события и в виде механизмов очагов землетрясений с выраженной сдвиговой компонентой в районах Чарской и Токкинской впадин, возникших в пределах Алданского щита Сибирской платформы.

Обсуждается возможный механизм распространения геодинамического влияния на БРЗ со стороны областей межплитного контактного взаимодействия. Высказано мнение о том, что механизм прерывистого распространения геодинамического влияния в литосферных плитах обусловлен движением фронтов замедленных волновых деформаций, фиксируемых на диаграммах в виде миграций кластеров сейсмической активности. Дальнодействие распространения медленных волн реализуется через триггерные инициации существующих в литосфере активных разрывных нарушений. Последние при взаимодействии с медленными волновыми деформациями могут проявляться как возбужденные источники диссипации сейсмических колебаний вследствие спонтанного высвобождения накопленной энергии недр. Проявлением данного механизма эндогенной энергетической подпитки может быть объяснен наблюдаемый эффект распространения ощутимых замедленных упруго-пластических деформаций на расстояния во многие тысячи километров.

При появлении новых материалов о более древнем возрасте зарождения ранних элементов БРЗ, а также с учетом уменьшения тектонической энергии при удалении от межплитных границ высказанная ранее гипотеза о родоначальной роли Индо-Евразийской коллизии в формировании БРЗ не находит подтверждения. Ощутимое сейсмотектоническое влияние на сейсмический режим БРЗ может эпизодически проявляться после масштаб- ной сейсмической активизации в областях коллизии и субдукции. Данное явление возможно использовать в качестве одного из критериев в среднесрочном прогнозе землетрясений с учетом запаздывания отклика.

Исходя из короткопериодной цикличности, наблюдаемой в сейсмическом режиме БРЗ и за ее пределами, а также и в сейсмомиграционных процессах, формулируется вывод о вероятном модулирующем влиянии космогенных факторов на сейсмотектонические процессы межплитного взаимодействия и сейсмомиграционные явления. К числу внеземных факторов относятся короткопериодные вариации в режимах ротационного и орбитального вращения Земли, а также ее гравитационного взаимодействия с Солнцем и Луной. Подобные короткопериодные циклы не могут быть порождены медленными эндогенными процессами тепловой конвекции Земли.

407-434 667
Аннотация

Введение. Изучение и картирование разломов земной коры – одна из приоритетных задач структурной геологии и тектонофизики. С разломами связаны месторождения полезных ископаемых, термальные источники и землетрясения. В их зонах наиболее проявлены опасные геологические процессы и различные геофизические аномалии. В связи с этим существует огромная потребность в картах и базах данных разломов, выполненных в цифровом виде и удобных для применения в различных областях. В статье представлены новая карта и база данных разломов для плиоцен‐четвертичного этапа активизации земной коры юга Восточной Сибири и сопредельной территории Северной Монголии в рамках координат 96–124° в.д. и 49–58° с.ш. с возможностью использования геопространственных данных о разломах, прилагаемых к статье в виде дополнительных файлов.

Исходные материалы и их синтез. Для составления карты и сопутствующей базы данных разломов, активных на плиоцен‐четвертичном этапе развития земной коры, использованы цифровые модели рельефа SRTM 90 м [Consortium for Spatial Information, 2004], космические снимки со спутников серии «Landsat» (Google Earth), электронная батиметрия оз. Байкал [Sherstyankin et al., 2006], топографические основы масштаба 1:200000, региональный и мировые каталоги землетрясений, а также литературный и картографический материал по предшествующему изучению активной тектоники и следов землетрясений, представленный в информационной системе «ActiveTectonics», разработанной под руководством автора статьи [Lunina et al., 2014b]. Для значительной территории юга Восточной Сибири собраны и обработаны полевые данные о разрывных нарушениях и сопутствующих деформациях (рис. 1). Составление карты на основе ГИС MapInfo обеспечило точную географическую привязку разломов, а синтез различных картографических, литературных и полевых материалов – достоверность выделенных тектонических нарушений, проявляющихся на топоосновах речными линеаментами и уступами. Значительное число выделенных линеаментов, не подтвержденных какими‐либо данными вследствие слабой изученности некоторых участков юга Восточной Сибири и сопредельных территорий, нашли свое отражение на карте в качестве предполагаемых разломов с особой отметкой в базе данных.

Результаты и их обсуждение. Цифровая карта на описываемую территорию включает 1678 разломов, состоящих из 2315 сегментов (рис. 2), которые выделяются на основании изменения простирания разлома или его разделения на отдельные фрагменты. Среди разломных сегментов 1097 являются достоверными, 1218 – предполагаемыми. На основе сопутствующей базы данных были построены карты, на которых разломные сегменты разделены по степени активности (рис. 3), типу смещений (рис. 4 и 7) и возрасту последней активизации (рис. 8). Кроме того, составлена карта сейсмоактивных разломов, способных генерировать землетрясения с M≥5.5. Анализ тематических карт разломов позволил сделать ряд заключений, которые отчасти были известны или спорны, но сейчас имеют под собой фактологическую основу в виде обоснования характеристик разломов в базе данных информационной системы «ActiveTectonics». Показано, что юго‐западная граница Байкальской рифтовой зоны проходит вдоль Бусийнгольской впадины и Западного Белино‐Бусийнгольского разлома, северо‐восточная – вдоль Олёкминского и Нюкжинского разломов, расположенных в бассейнах одноименных рек. Западнее и восточнее указанных тектонических границ происходит резкая смена рифтового режима развития, который может характеризоваться растяжением, растяжением со сдвигом и сдвигом (при условии их закономерного соседства в пространстве), на транспрессионный. Для голоцена и настоящего времени для юга Восточной Сибири в целом характерны единые особенности активизации, в том числе и сейсмогенной, когда обновляются преимущественно разломы СВ–ЮЗ и субширотного простирания, к которым относятся сбросы, левые сдвиго‐сбросы, левые сдвиги, левые сбросо‐сдвиги, левые взбросо‐сдвиги. Западнее меридиана 98° северо‐восточные разломы перестают быть значимыми.

Заключение. Представленные базовая (рис. 2) и тематические карты (рис. 3, 4, 7–9) разломов в цифровом виде могут быть использованы как тектонические основы для обобщения геологических, геофизических, гидрогеологических и геодезических данных в целях прогнозирования опасных эндогенных и экзогенных геологических процессов. Безусловным преимуществом базовой карты перед другими региональными картами разломов является ее комплексная основа, объединяющая большое количество данных, собранных в основном сибирскими учеными и объединенных в едином информационном пространстве. Карта сопровождается базой данных, которая может пополняться при получении новой информации и просматриваться на html‐страницах в режиме off‐line.

435-458 439
Аннотация
В статье представлены результаты комплексного изучения коренного месторождения алмазов трубка Нюрбинская. Установлено, что трубка приурочена к узлу разломов четырех направлений и сложена кимберлитами четырех фаз. Анализ разноранговых разрывных нарушений и тектонической трещиноватости позволил восстановить поля тектонических напряжений, действовавшие на этапе формирования кимберлитового тела и определить последовательность их проявления во времени. Полученные данные о закономерностях вещественного строения трубки Нюрбинской и результаты геолого-структурных исследований объединены в рамках единой структурно-вещественной модели формирования месторождения. Особенности функционирования разрывной сети на этапе формирования месторождения подтверждены результатами экспериментов с использованием поляризационно-оптического метода. Полученная модель позволила сформулировать признаки, определяющие основные структурные характеристики объекта поисковых работ, в пределах которого возможно формирование кимберлитовых тел типа трубки Нюрбинской, и на их основании выделить те элементы разломной сети (разломные узлы), которые являются перспективными для обнаружения кимберлитовых трубок.

ПАЛЕОГЕОДИНАМИКА

459-476 511
Аннотация
На основе свободной энергии Гельмгольца построены уравнения состояния корунда (α-Al2O3), эсколаита (Cr2O3), гематита (α-Fe2O3) и магнетита (Fe3O4) путем одновременной оптимизации ультразвуковых, рентгеновских, дилатометрических данных и термохимических измерений теплоемкости при атмосферном давлении и при повышенных температурах и давлениях. Магнитный вклад в свободную энергию Гельмгольца для Cr2O3, α-Fe2O3 и Fe3O4 определен с помощью модели A.T. Динсдала [Dinsdale, 1991]. Предложенный подход к построению уравнений состояния хорошо описывает λ-видную аномалию в теплоемкостях эсколаита, гематита и магнетита, которая связана с изменением магнитных свойств. Полная термодинамическая модель уравнений состояния α-Al2O3, Cr2O3, α-Fe2O3 и Fe3O4 содержит группу из семи фиксированных параметров и группу из девяти подгоночных параметров, значения которых определяются методом наименьших квадратов. Рассчитанные термодинамические функции породообразующих оксидов алюминия, хрома и железа хорошо согласуются со справочными данными и экспериментальными измерениями при атмосферном давлении, а также с современными P-V-T измерениями в алмазных наковальнях и многопуансонных аппаратах высокого давления. Приведена табуляция термодинамических функций (объем, коэффициент термического расширения, изобарная и изохорная теплоемкость, энтропия, адиабатический и изотермиче- ский модули сжатия, термодинамический параметр Грюнейзена и энергия Гиббса) корунда, эсколаита, гематита и магнетита до температуры 2000 K при разных давлениях (до 80, 70, 50 и 20 ГПа, соответственно). Таким образом, полученные уравнения состояния уточняют термодинамику оксидных фаз от стандартных условий до температур и давлений, соответствующих условиям мантии Земли. Рассчитанная энергия Гиббса породообразующих оксидов алюминия, хрома и железа может быть использована для построения фазовых диаграмм минеральных систем с их участием, имеющих принципиальное значение для интерпретации глобальных и промежуточных границ в земной мантии.

СОВРЕМЕННАЯ ГЕОДИНАМИКА

477-493 454
Аннотация

Целью исследований было провести систематизирование водопроявлений Прибайкалья и Забайкалья по содержанию радона (Q), а также установить закономерности изменчивости параметра Q в пространстве и времени.

Фактическим материалом для анализа послужили собственные и заимствованные из литературных источников оценки параметра Q во многих десятках водопроявлений региона (рис. 1), а также данные монито- ринга восьми источников, принадлежащих к зоне влияния Ангарского разлома в Южном Приангарье (рис. 5). Измерения содержания радона в пробах воды проводились в соответствии со стандартной методикой при помощи радиометра РРА-01М-03, который характеризуется чувствительностью не менее 1.4∙10–4 с–1∙Бк–1∙м3 и 30%-ным пределом допустимой относительной погрешности.

Частотное распределение величин Q, измеренных в Прибайкалье и Забайкалье (рис. 2), а также анализ известных классификаций водопроявлений по радиоактивности позволили предложить единую для изученного региона систематику подземных вод в зависимости от содержания 222Rn (табл. 1). Для сейсмически активного Прибайкалья, где источники собственно радоновых вод с Q>185 Бк/л почти не встречаются, практическое значение имеет выделение трех первых групп со следующими пределами изменения параметра Q: группа I – Q≤15 Бк/л, группа II – 16≤Q≤99 Бк/л, группа III – 100≤Q≤184 Бк/л. Большинство опробованных в Прибайкалье и Забайкалье источников относится к группам I и II, что позволяет рекомендовать объективно существующую величину 100 Бк/л в качестве уровня вмешательства при подготовке питьевой воды в регионе вместо предела в 60 Бк/кг, принятого сейчас в России.

Для выявления пространственных закономерностей распространения в Прибайкалье и Забайкалье источников подземных вод, относящихся к разным группам по радиоактивности, проведено их опробование вдоль трансекта Баяндай–Мухоршибирь, пересекающего Байкальский рифт и другие крупные тектонические структуры изучаемого региона (рис. 4). В более крупном масштабе выполнен анализ изменчивости содержания радона в источниках подземных вод, приуроченных к отдельным участкам зон влияния Тункинского сброса (рис. 3), Приморского сброса, Ангарского сбросо-сдвига и других активных разломов изучаемого реги- она.

В рамках пространственного аспекта проведенного исследования выделены вещественный и структурный факторы, определяющие радиоактивность подземных вод рассматриваемого региона. Подтверждены результаты предшествовавших исследований, свидетельствующие в целом о меньшем содержании радона в подземных водах Прибайкалья в сравнении с Забайкальем, где повышенная радиоактивность обусловлена широким распространением разнотипных гранитоидов. Фоновые концентрации радиоактивного газа в Прибайкалье соответствуют группе I, а в Забайкалье – группе II. Граница между областями с разной радиоактивностью подземных вод смещена к юго-востоку от приосевых структур Байкальского рифта. В пределах трансекта Баяндай – Мухоршибирь она совпадает с известной границей между Забайкальской провинцией холодных углекислых вод и Байкальской провинцией азотных и метановых терм (рис. 4). Структурный фактор формирования эманационного поля выражается в повышении радиоактивности вод, приуроченных к разломам, где вследствие повышенной проницаемости и геодинамической активности интенсифицируется выход радона и/или создаются эманирующие коллекторы (рис. 3, 4). В Прибайкалье с разломами обычно связаны водопроявления группы II, а в Забайкалье – источники подземных вод, принадлежащие к группам III–VI.

Для выявления характера временных вариаций радиоактивности подземных вод были проанализированы длинные ряды (от 9 до 30 месяцев) мониторинга значений Q в восьми водопроявлениях из зоны Ангарского разлома в Южном Приангарье (рис. 5, 6). Согласно принятой классификации (табл. 1), три водопункта относились к близповерхностным источникам (группа I) и пять водопроявлений – к источникам более глубоких разломных вод (группа II). Несмотря на отчетливые вариации радиоактивности, большую часть времени мониторинга изученные водопроявления не выходили за пороговые значения Q в пределах соответствующих групп. Периодические появления аномально высоких и низких содержаний радона оказались связанными с сезонными вариациями метеопараметров (рис. 6).

Корреляционный анализ величины Q с атмосферным давлением (Р), влажностью (U) и температурой (Т) воздуха показал существование отчетливой зависимости содержания радона в подземных водах от величин Т и Р (табл. 3). Вслед за ведущим сезонным трендом температуры воздуха радиоактивность исследуемых вод увеличивается зимой и уменьшается летом (рис. 6). Параметр Т оказывает опосредованное влияние на величину Q через изменение температуры воды, вариации дебита водоисточников, промерзание верхнего слоя грунтов и другие процессы, параметрическое изучение которых представляет задачу дальнейших исследований по проблеме.

Согласно данным мониторинга (табл. 3, рис. 6, А), содержание радона у близповерхностных водопроявлений из группы I может меняться на единицы и первые десятки, а для более глубоких (приразломных) водоисточников группы II – на десятки беккерелей на литр. Как следствие, в непродолжительные периоды проявления экстремальных значений Q содержание радона в воде конкретного источника может повыситься или понизиться до значений, соответствующих смежной группе по радиоактивности.

В работе охарактеризована радоновая активность подземных вод Прибайкалья и Забайкалья, причем особый акцент сделан на закономерностях пространственной и временной изменчивости содержания 222Rn в водопроявлениях с Q<185 Бк/л. Это нерадоновые воды, которые наиболее распространены в Прибайкалье, включая районы активного природопользования. Несмотря на низкое содержание 222Rn, они являются важным объектом дальнейших целенаправленных исследований по поиску лечебных вод, оценке качества питьевой воды и выявлению эманационных предвестников сильных землетрясений в регионе.



Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)