Preview

Геодинамика и тектонофизика

Расширенный поиск

СУБДУКЦИОННЫЕ ЭКЛОГИТЫ БЕЛОМОРСКОЙ ЭКЛОГИТОВОЙ ПРОВИНЦИИ (ВОСТОК ФЕННОСКАНДИНАВСКОГО ЩИТА, РОССИЯ): МЕЗОАРХЕЙ, НЕОАРХЕЙ ИЛИ ПОЗДНИЙ ПАЛЕОПРОТЕРОЗОЙ?

https://doi.org/10.5800/GT-2020-11-1-0469

Аннотация

Критическое обсуждение конкурирующих моделей геодинамической природы (океанская иликонтинентальная субдукция) и возраста (мезонеоархей или поздний палеопротерозой) эклогитового метаморфизма ассоциации Салма в Беломорской эклогитовой провинции опирается на систематический анализ обширной базы данных, полученных сторонниками обеих моделей. Имеющиеся данные характеризуют геологическое строение ассоциации Салма и особенности цирконов из эклогитов: изотопно-геохронологические и геохимические параметры, состав и особенности распределения минеральных включений. Закономерные изменения трендов REE и температуры кристаллизации – рекристаллизации пористых цирконов в эклогитах-метагаббро иллюстрируют последовательность магматических и метаморфических событий в мезонеоархее и палеопротерозое. Восприимчивость к перекристаллизации цирконов обусловлена частичной метамиктностью и пористой структурой. Наиболее ранние (~2.9 млрд лет) зоны цирконов сохраняют тренды REE магматического типа. Микровключения минералов пренит-пумпеллиитовой и зеленосланцевой фации и рост концентраций LREE и MREE свидетельствуют о гидротермальном метаморфизме в зоне спрединга и на океанском дне 2.90–2.82 млрд лет назад. Пренит, пумпеллиит, альбит, актинолит, хлорит, диаспор и сапонит образуют включения также и вэклогитовом гранате. Увеличение концентраций LREE и MREE, исчезновение положительной Ce-аномалии, смена отрицательной на положительную аномалию Eu 2.82–2.78 млрд лет назад предполагают удаление плагио-клаза при образовании эклогитовой ассоциации «гранат + омфацит» и замещение сфена рутилом. На эклогитовыйметаморфизм указывают микровключения граната и рутила в цирконе. Неоархейский метаморфизм гранулитовой фации 2.77–2.70 млрд лет назад зафиксирован округло-овальными цирконами из эклогитов-метагабброноритов: температурами кристаллизации 700–900 °С и отрицательными аномалиями Eu в ядрах и каймах цирконов, которые указывают на участие плагиоклаза в процессе метаморфической кристаллизации. Поздние (2.1–1.7 млрд лет) каймы пористых цирконов, возникшие при 600–680 °С, отличаются минимальными концентрациями REE, сменой положительной на отрицательную аномалию Eu и появлением отрицательной Ce-аномалии, что указывает на присутствие плагиоклаза, восстановительный тип флюидов и низкую активность воды, характерную для высокотемпературного метаморфизма в обстановках растяжения и мантийно-плюмовой активности. Глубокая перестройка Sm-Nd системы пород Беломорской тектонической провинции, включая БЭП, ~1.9 млрд лет назад вызвана прогревом коры, который распространялся от границы с Лапландским гранулитовым поясом в ЗЮЗ направлении. Перестройка Lu-Hf системы в цирконе со значительным приростом радиогенного Hf указывает на перекристаллизацию длительно существовавшего граната, в котором к 1.9 млрд лет в результате распада 176Lu накопилось значительное количество радиогенного 176Hf. Это противоречит ранее выдвинутому предположению о первичной кристаллизации эклогитового граната в позднем палеопротерозое 1.94–1.89 млрд лет назад.

Об авторах

М. В. Минц
Геологический институт РАН
Россия

МИХАИЛ ВЕНИАМИНОВИЧ МИНЦ докт. геол.-мин. наук, зав. лабораторией

119017, Москва, Пыжевский пер., 7, Россия



К. А. Докукина
Геологический институт РАН
Россия

КСЕНИЯ АЛЕКСАНДРОВНА ДОКУКИНА канд. геол.-мин. наук, в.н.с.

119017, Москва, Пыжевский пер., 7, Россия



Список литературы

1. Алексеев Н.Л. Реакционные структуры интрузивных и метаморфических пород как индикаторы направленности процессов метаморфизма (на примере Кандалакшско-Колвицкой зоны, Балтийский щит): Автореф. дис. … канд. геол.-мин. наук. СПб., 1997. 26 с.

2. Angiboust S., Harlov D.E., 2017. Ilmenite breakdown and rutile-titanite stability in metagranitoids: Natural observations and experimental results. American Mineralogist 102 (8), 1696–1708. https://doi.org/10.2138/am-2017-6064.

3. Aranovich L.Y., Bortnikov N.S., Zinger T.F., Borisovskiy S.E., Matrenichev V.A., Pertsev A.N., Sharkov E.V., Skolotnev S.G., 2017. Morphology and impurity elements of zircon in the oceanic lithosphere at the Mid-Atlantic Ridge axial zone (6–13° N): Evidence of specifics of magmatic crystallization and postmagmatic transformations. Petrology 25 (4), 339–364. https://doi.org/10.1134/S0869591117040026.

4. Balagansky V., Shchipansky A., Slabunov A., Gorbunov I., Mudruk S., Sidorov M., Azimov P., Egorova S., Stepanova A., Voloshin A., 2015. Archean Kuru-Vaara eclogites in the northern Belomorian Province, Fennoscandian Shield: crustal architecture, timing and tectonic implications. International Geology Review 57 (11–12), 1543–1565. https://doi.org/10.1080/00206814.2014.958578.

5. Baldermann A., Dohrmann R., Kaufhold S., Nickel C., Letofsky-Papst I., Dietzel M., 2014. The Fe-Mg-saponite solid solution series – a hydrothermal synthesis study. Clay Minerals 49 (3), 391–415. https://doi.org/10.1180/clay-min.2014.049.3.04.

6. Barbey P., Raith M., 1990. The granulite belt of Lapland. In: D. Vielzeuf, Ph. Vidal (Eds), Granulites and crustal evolution. Kluwer, Dordrecht, p. 111–132. https://doi.org/10.1007/978-94-009-2055-2_7.

7. Berthelsen A., Marker M., 1986. Tectonics of the Kola collision suture and adjacent Archaean and Early Proterozoic terrains in the northeastern region of the Baltic Shield. Tectonophysics 126 (1), 31–55. https://doi.org/10.1016/0040-1951(86)90219-2.

8. Bibikova E.V., Bogdanova S.V., Glebovitsky V.A., Claesson S., Skiold T., 2004. Evolution of the Belomorian Belt: NORDSIM U-Pb zircon dating of the Chupa paragneisses, magmatism, and metamorphic stages. Petrology 12 (3), 195–210.

9. Бибикова Е.В., Богданова М.Н., Шельд Т. Новые U-Pb изотопные данные архея Северо-Западного Беломорья // Доклады АН. 1995. Т. 344. № 6. С. 794–797.

10. Бибикова Е.В., Мельников В.Ф., Авакян К.Х., 1993. Лапландские гранулиты: петрохимия, геохимия и изотопный возраст // Петрология. 1993. Т. 1. № 2. С. 215–234.

11. Bibikova E., Skiöld T., Bogdanova S., Gorbatschev R., Slabunov A., 2001. Titanite-rutile thermochronometry across the boundary between the Archaean Craton in Karelia and the Belomorian Mobile Belt, eastern Baltic Shield. Precambrian Research 105 (2–4), 315–330. https://doi.org/10.1016/S0301-9268(00)00117-0.

12. Bibikova E.V., Slabunov A.I., Bogdanova S.V., Skiöld T., Stepanov V.S., Borisova E.Yu., 1999. Early magmatism of the Belomorian Mobile Belt, Baltic Shield: Lateral zoning and isotopic age. Petrology 7 (2), 123–146.

13. Bindeman I., 2008. Oxygen isotopes in mantle and crustal magmas as revealed by single crystal analysis. Reviews in Mineralogy and Geochemistry 69, 445–478. https://doi.org/10.2138/rmg.2008.69.12.

14. Blackman D.K., Cann J.R., Janssen B., Smith D.K., 1998. Origin of extensional core complexes: Evidence from the Mid-Atlantic Ridge at Atlantis Fracture Zone. Journal of Geophysical Research: Solid Earth 103 (B9), 21315–21333. https://doi.org/10.1029/98JB01756.

15. Borisova E.Yu., Bibikova E.V., Lvov A.B., Miller Yu.V., 1997. U-Pb age and nature of magmatic complex of Seryak mafic zone (the Belomorian Mobile Belt), Baltic Shield. Terra Nova 9 (S1), 132.

16. Bröcker M., Enders M., 1999. U–Pb zircon geochronology of unusual eclogite-facies rocks from Syros and Tinos (Cyclades, Greece). Geological Magazine 136 (2), 111–118. https://doi.org/10.1017/S0016756899002320.

17. Bröcker M., Enders M., 2001. Unusual bulk-rock compositions in eclogite-facies rocks from Syros and Tinos Cyclades, Greece: implications for U–Pb zircon geochronology. Chemical Geology 175 (3–4), 581–603. https://doi.org/10.1016/S0009-2541(00)00369-7.

18. Cao D., Cheng H., Zhang L., Wang K., 2018. Origin of atoll garnets in ultra-high-pressure eclogites and implications for infiltration of external fluids. Journal of Asian Earth Sciences 160, 224–238. https://doi.org/10.1016/j.jseaes.2018.04.030.

19. Cheng H., Nakamura E., Kobayashi K., Zhou Z., 2007. Origin of atoll garnets in eclogites and implications for the redistribution of trace elements during slab exhumation in a continental subduction zone. American Mineralogist 92 (7), 1119–1129. https://doi.org/10.2138/am.2007.2343.

20. Corfu F., Hanchar J.M., Hoskin P.W.O., Kinny P., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry 53, 469–500. https://doi.org/10.2113/0530469.

21. Daly J.S., Balagansky V.V., Timmerman M.J., Whitehouse M.J., 2006. The Lapland-Kola orogen: Palaeoproterozoic collision and accretion of the northern Fennoscandian lithosphere. In: D.G. Gee, R.A. Stephenson (Eds), European lithosphere dynamics. Geological Society, London, Memoirs, vol. 32, p. 579–598. https://doi.org/10.1144/GSL.MEM.2006.032.01.35.

22. Dick H.J.B., Natland J.H., Alt J.C., Bach W., Bideau D., Gee J.S., Haggas S., Hertogen J.G.H., Hirth G., Holm P.M., Ildefonse B., Iturrino G.J., John B.E., Kelley D.S., Kikawa E., Kingdon A., LeRoux P.J., Maeda J., Meyer P.S., Miller D.J., Naslund H.R., Niu Y.-L., Robinson P.T., Snow J., Stephen R.A., Trimby P.W., Worm H.-U., Yoshinobu A., 2000. A long in situ section of the lower ocean crust: Results of ODP Leg 176 drilling at the Southwest Indian Ridge. Earth and Planetary Science Letters 179 (1), 31–51. https://doi.org/10.1016/S0012-821X(00)00102-3.

23. Dick H.J.B., Natland J.H., Miller D.J. et al., 1999. Proceedings of the Ocean Drilling Program, Initial Reports, vol. 176. https://doi.org/10.2973/odp.proc.ir.176.1999.

24. Dokukina K.A., Bayanova T.B., Kaulina T.V., Travin A.V., Mints M.V., Konilov A.N., Serov P.A., 2012. The Belomorian eclogite province: sequence of events and age of the igneous and metamorphic rocks of the Gridino association. Russian Geology and Geophysics 53 (10), 1023–1054. https://doi.org/10.1016/j.rgg.2012.08.006.

25. Dokukina K.A., Kaulina T.V., Konilov A.N., Mints M.V., Wan K.V, Natapov L.M., Belousova E.A., Simakin S.G., Lepekhina E.N., 2014. Archaean to Palaeoproterozoic high-grade evolution of the Belomorian eclogite province in the Gridino area, Fennoscandian Shield: Geochronological evidence. Gondwana Research 25 (2), 585–613. https://doi.org/10.1016/j.gr.2013.02.014.

26. Dokukina K.A., Konilov A.N., 2011. Metamorphic evolution of the Gridino mafic dyke swarm (Belomorian eclogite province, Russia). In: L. Dobrzhinetskaya, S. Cuthbert, W. Faryad, S. Wallis (Eds), Ultrahigh-pressure metamorphism. 25 years after the discovery of coesite and diamond. Amsterdam, Elsevier, p. 579–621. https://doi.org/10.1016/B978-0-12-385144-4.00017-5.

27. Dokukina K.A., Konilov A.N., Bayanova T.B., Kaulina T.V., Travin A.V., 2010. New geochronological data on metamorphic and igneous rocks from the Gridino village area (Belomorian Eclogitic Province). Doklady Earth Sciences 432 (1), 255–258. https://doi.org/10.1134/S1028334X09020275.

28. Dokukina K.A., Konilov A.N., Kaulina T.V., 2009. Dating of key events in the Precambrian polystage complexes: an example from Archaen Belomorian Eclogite Province, Russia. Doklady Earth Sciences 425 (1), 296–301. https://doi.org/10.1134/S1028334X09020275.

29. Dokukina K.A., Mints M.V., 2019. Subduction of the Meso-archaean spreading ridge and related metamorphism, magma-tism and deformation by the example of the Gridino eclogitized mafic dyke swarm, the Belomorian Eclogite Province, eastern Fennoscandian Shield. Journal of Geodynamics 123, 1–37. https://doi.org/10.1016/j.jog.2018.11.003.

30. Dokukina K.A., Mints M.V., Konilov A.N., 2017. Melting of eclogite facies sedimentary rocks in the Belomorian Eclogite Province, Russia. Journal of Metamorphic Geology 35 (4), 435–451. https://doi.org/doi:10.1111/jmg.12239.

31. Faryad S.W., Klápová H., Nosál L., 2010а. Mechanism of formation of atoll garnet during high-pressure metamorphism. Mineralogical Magazine 74 (1), 111–126. https://doi.org/10.1180/minmag.2010.074.1.111.

32. Faryad S.W., Nahodilová R., Dolejš D., 2010b. Incipient eclogite facies metamorphism in the Moldanubian granulites revealed by mineral inclusions in garnet. Lithos 114 (1–2), 54–69. https://doi.org/10.1016/j.lithos.2009.0.014.

33. Geisler T., Schaltegger U., Tomaschek F., 2007. Re-equilibration of zircon in aqueous fluids and melts. Elements 3 (1), 43–50. https://doi.org/10.2113/gselements.3.1.43.

34. Glebovitskii V.A., Zinger T.F., Belyatskii B.V., 2000. On the age of granulites of the western Belomorian belt and of the thrust formation. Doklady Earth Sciences 371 (2), 255–258.

35. Ранний докембрий Балтийского щита / Ред. В.А. Глебовицкий. СПб.: Наука, 2005. 711 с.

36. Gordon S.M., Whitney D.L., Teyssier C., Fossen H., 2013. U-Pb dates and trace element geochemistry of zircon from migmatite, Western Gneiss Region, Norway: significance for history of partial melting in continental subduction. Lithos 170–171, 35–53. http://doi.org/10.1016/j.lithos.2013.02.003.

37. Grimes C.B., John B.E., Cheadle M.J., Mazdab F.K., Wooden J.L., Swapp S., Schwartz J.J., 2009. On the occurrence, trace element geochemistry, and crystallization history of zircon from in situ ocean lithosphere. Contributions to Mineralogy and Petrology 158 (6), 757–783. https://doi.org/10.1007/s00410-009-0409-2.

38. Grimes C.B., John B.E., Cheadle M.J., Wooden J.L., 2008. Protracted construction of gabbroic crust at a slow spreading ridge: Constraints from 206Pb/238U zircon ages from Atlantis Massif and IODP Hole U1309D (30°N, MAR). Geochemistry, Geophysics, Geosystems 9 (8), Q08012. https://doi.org/10.1029/2008gc002063.

39. Harley S.L., Kelly N.M., 2007. Zircon: Tiny but Timely. Elements 3 (1), 13–18. https://doi.org/10.2113/gselements.3.1.13.

40. Henderson P., 1980. Rare Earth Element partition between sphene, apatite and other coexisting minerals of the Kangerdlugssuaq intrusion, E. Greenland. Contributions to Mineralogy and Petrology 72 (1), 81–85. https://doi.org/10.1007/BF00375570.

41. Herwartz D., Skublov S.G., Berezin A.V., Mel'nik A.E., 2012. First Lu-Hf garnet ages of eclogites from the Belomorian Mobile Belt (Baltic Shield, Russia). Doklady Earth Sciences 443 (1), 377–380. https://doi.org/10.1134/S1028334X12030130.

42. Hoskin P.W.O., 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta 69 (3), 637–648. https://doi.org/doi:10.1016/j.gca.2004.07.006.

43. Hoskin P.W.O., Black L.P., 2000, Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology 18 (4), 423–439. https://doi.org/10.1046/j.1525-1314.2000.00266.x.

44. Hoskin P.W.O., Kinny P.D., Wyborn D., 1998. Chemistry of hydrothermal zircon: Investigating timing and nature of water-rock interaction. In: G.B. Arehart, J.R. Hulston (Eds), Water-rock interaction. Proceedings of the 9th International Symposium on Water-Rock Interaction, WRI-9, Taupo, New Zealand (30 March – 3 April 1998). Balkema, Rotterdam, The Netherlands, p. 545–548.

45. Hoskin P.W.O., Schaltegger U., 2003. The composition of zircon and igneous and metamorphic petrogenesis. Reviews in Mineralogy and Geochemistry 53, 27–62. https://doi.org/10.2113/0530027.

46. Hunter A.G. and ODP Leg 168 Scientific Party, 1998. Petrological investigations of low temperature hydrothermal alteration of the upper crust, Juan de Fuca Ridge, ODP Leg 168. In: R.A. Mills, K. Harrison (Eds), Modern ocean floor processes and the geological record. Geological Society, London, Special Publications, vol. 148, p. 99–125. https://doi.org/10.1144/GSL.SP.1998.148.01.07.

47. Hölttä P., Huhma H., Mänttäri I., Paavola J., 2000. P-T-t development of Archaean granulites in Varpaisjärvi, Central Finland: II. Dating of high-grade metamorphism with the U–Pb and Sm–Nd methods. Lithos 50 (1–3), 121–136. https://doi.org/10.1016/S0024-4937(99)00055-9.

48. Imayama T., Oh C.-W., Baltybaev S.K., Park C.-S., Yi K., Jung H., 2017. Paleoproterozoic high-pressure metamorphic history of the Salma eclogite on the Kola Peninsula, Russia. Lithosphere 9 (6), 855–873. https://doi.org/10.1130/L657.1.

49. Kaczmarek M.-A., Müntener O., Rubatto D., 2008, Trace element chemistry and U–Pb dating of zircons from oceanic gabbros and their relationship with whole rock composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology 155 (3), 295–312. https://doi.org/10.1007/s00410-007-0243-3.

50. Каулина Т.В. Образование и преобразование циркона в полиметаморфических комплексах. Апатиты: Изд-во Кольского научного центра РАН, 2010. 144 с.

51. Kaulina T.V., Yapaskurt V.O., Presnyakov S.L., Savchenko E.E., Simakin S.G., 2010. Metamorphic evolution of the Archean eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula): Geochemical features of zircon, composition of inclusions, and age. Geochemistry International 48 (9), 871–890. https://doi.org/10.1134/S001670291009003X.

52. Конилов А.Н., Пожиленко В.И., Ван К.В., Голованова Т.И., Пронина М.В., Шкляр Н.Е., Понкратов К.В. Исследование эклогитов Беломорской провинции современными аналитическими методами // Аналитика. 2018. Т. 8. № 4. С. 243–254 https://doi.org/10.22184/2227-572X.2018.41.4.364.375.

53. Konilov A.N., Shchipansky A.A., Mints M.V., Dokukina K.A., Kaulina T.V., Bayanova T.B., Natapov L.M., Belousova E.A., Griffin W.L., O’Reilly S.Y., 2011. The Salma eclogites of the Belomorian Province, Russia: HP/UHP metamorphism through the subduction of Mesoarchean oceanic crust. In: L. Dobrzhinetskaya, S. Cuthbert, W. Faryad, S. Wallis (Eds), Ultrahigh-pressure metamorphism. 25 years after the discovery of coesite and diamond. Amsterdam, Elsevier, p. 623–670. https://doi.org/10.1016/B978-0-12-385144-4.00018-7.

54. Korja A., Korja T., Luosto U., Heikkinen P., 1993. Seismic and geoelectric evidence for collisional and extensional events in the Fennoscandian Shield – Implications for Precambrian crustal evolution. Tectonophysics 219 (1–3), 129–152. https://doi.org/10.1016/0040-1951(93)90292-R.

55. Krogh T.E., Davis G.L., 1975. Alteration in zircons and differential dissolution of altered and metamict zircon. In: Carnegie Institution Washington, Year Book. vol. 74, p. 619–623.

56. Kuno H., 1968. Origin of andesite and its bearing on the island arc structure. Bulletin of Volcanology 32 (1), 141–176. https://doi.org/10.1007/BF02596589.

57. Lapen T.J., Johnson C.M., Baumgartner L.P., Mahlen N.J., Beard B.L., Amato J.M., 2003. Burial rates during prograde metamorphism of an ultra-high pressure terrane: an example from Lagi di Cignana, western Alps, Italy. Earth and Planetary Science Letters 215 (1–2), 57–72. https://doi.org/10.1016/S0012-821X(03)00455-2.

58. Levchenkov O.A., Rizvanova N.G., Maslenikov A.V., Makeev A.F., Levsky L.K., Bezmen N.I., 1998. Kinetics of Pb and U losses from metamict zircon under different P-T-X conditions. Geochemistry International 36 (11), 1006–1013.

59. Li X., Zhang L., Wei C., Slabunov A.I., Bader T., 2017a. Neoarchean-Paleoproterozoic granulite-facies metamorphism in Uzkaya Salma eclogite-bearing mélange, Belomorian Province (Russia). Precambrian Research 294, 257–283. https://doi.org/10.1016/j.precamres.2017.03.031.

60. Li X., Zhang L., Wei C., Slabunov A.I., Bader T., 2017b. Quartz and orthopyroxene exsolution lamellae in clinopyroxene and the metamorphic P–T path of Belomorian eclogites. Journal of Metamorphic Geology 36 (1), 1–22. https://doi.org/10.1111/jmg.12280.

61. Liu J., Ye K., Maruyama S., Cong B., Fan H., 2001. Mineral inclusions in zircon from gneisses in the ultrahigh-pressure zone of the Dabie Mountains, China. The Journal of Geology 109 (4), 523–535. https://doi.org/10.1086/320796.

62. Marks M.A.W., Coulson I.M., Schilling J., Jacob D.E., Schmitt A.K., Markl G., 2008. The effect of titanite and other HFSE-rich mineral (Ti-bearing andradite, zircon, eudialyte) fractionation on the geochemical evolution of silicate melts. Chemical Geology 257 (1–2), 153–172. https://doi.org/10.1016/j.chemgeo.2008.09.002.

63. Матвеева Л.В., Лобач-Жученко С.Б., Чекулаев В.П., Арестова Н.А. Геология неоархейского гранулитового метаморфизма Прионежья // Гранулитовые и эклогитовые комплексы в истории Земли: Материалы конференции. Петрозаводск, 2011. С. 132–134.

64. Mel’nik A.E., Skublov S.G., Marin Yu.B., Berezin A.V., Bogomolov E.S., 2013. New data on the age (U–Pb, Sm–Nd) of garnetites from Salma eclogites of the Belomorian Mobile Belt. Doklady Earth Sciences 448 (1), 78–85. https://doi.org/10.1134/S1028334X13010133.

65. Melezhik V.A., Prave A.R., Fallick A.E., Lepland A., Kump L.R., Strauss H. (Eds), 2012. Reading the Archive of Earth’s Oxygenation. Vol. 1. The Palaeoproterozoic of Fennoscandia as Context for the Fennoscandian Arctic Russia – Drilling Early Earth Project: Berlin, Heidelberg, Springer, 490 p.

66. Mints M.V., 2007. Paleoproterozoic Supercontinent: origin and evolution of accretionary and collisional orogens exemplified in northern cratons. Geotectonics 41 (4), 257– 280. https://doi.org/10.1134/S0016852107040012.

67. Mints M.V., 2014. Tectonics and geodynamics of granulite-gneiss complexes in the East European Craton. Geotectonics 48 (6), 498–524. https://doi.org/10.1134/S0016852114060089.

68. Минц М.В. Геодинамическая интерпретация объемной модели глубинного строения Свекофеннского аккреционного орогена // Труды Карельского НЦ РАН, серия Геология докембрия. 2018. № 2. С. 62–76. https://doi.org/10.17076/geo698.

69. Mints M.V., Belousova E.A., Konilov A.N., Natapov L.M., Shchipansky A.A., Griffin W.L., O’Reilly S.Y., Dokukina K.A., Kaulina T.V., 2010a. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 38 (8), 739–742. https://doi.org/10.1130/G31219.1.

70. Mints M.V., Dokukina K.A., Konilov A.N., 2014. The Meso- Neoarchaean Belomorian eclogite province: Tectonic position and geodynamic evolution. Gondwana Research 25 (2), 561–584. https://doi.org/10.1016/j.gr.2012.11.010.

71. Mints M.V., Dokukina K.A., Konilov A.N., Philippova I.B., Zlobin V.L., Babayants P.S., Belousova E.A., Blokh Yu.I., Bogina M.M., Bush W.A., Dokukin P.A., Kaulina T.V., Natapov L.M., Piip V.B., Stupak V.M., Suleimanov A.K., Trusov A.A., Van K.V., Zamozhniaya N.G., 2015. East European Craton: Early Precambrian history and 3D Models of Deep Crustal Structure. Geological Society of America Special Paper, vol. 510, 433 p. https://doi.org/10.1130/2015.2510.

72. Mints M.V., Eriksson P.G., 2016. Secular changes in relationships between plate-tectonic and mantle-plume engendered processes during Precambrian time exemplified from East European and North American cratons. Geodynamics & Tectonophysics 7 (2), 173–232. https://doi.org/10.5800/GT-2016-7-2-0203.

73. Mints M.V., Kaulina T.V., Konilov A.N., Krotov A.V., Stupak V.M., 2007. The thermal and geodynamic evolution of the Lapland granulite belt: implications for the thermal structure of the lower crust during granulite-facies metamorphism. Gondwana Research 12 (3), 252–267. https://doi.org/10.1016/j.gr.2006.10.007.

74. Минц М.В., Сулейманов А.К., Бабаянц П.С., Белоусова Е.А., Блох Ю.И., Богина М.М., Буш В.А., Докукина К.А., Заможняя Н.Г., Злобин В.Л., Каулина Т.В., Конилов А.Н., Михайлов В.О., Натапов Л.М., Пийп В.Б., Ступак В.М., Тихоцкий С.А., Трусов А.А., Филиппова И.Б., Шур Д.Ю. Глубинное строение, эволюция и полезные ископаемые раннедокембрийского фундамента Восточно-Европейской платформы: Интерпретация материалов по опорному профилю 1-ЕВ, профилям 4В и Татсейс. М.: ГЕОКАРТ; ГЕОС, 2010. Т. 1, 408 с., Т. 2, 400 с.

75. Mints M., Suleimanov A., Zamozhniaya N., Stupak V., 2009. A three-dimensional model of the Early Precambrian crust under the southeastern Fennoscandian Shield: Karelia craton and Belomorian tectonic province. Tectonophysics 472 (1–4), 323–339. https://doi.org/10.1016/j.tecto.2008.12.008.

76. Mutanen T., Huhma H., 2003. The 3.5 Ga Siurua trondhjemite gneiss in the Archaean Pudasjärvi Granulite Belt, northern Finland. Bulletin of the Geological Society of Finland 75 (1–2), 51–68. https://doi.org/10.17741/bgsf/75.1-2.004.

77. Müller S., Dziggel A., Kolb J., Sindern S., 2018. Mineral textural evolution and PT-path of relict eclogite-facies rocks in the Paleoproterozoic Nagssugtoqidian Orogen, South-East Greenland. Lithos 296–299, 212–232. https://doi.org/10.1016/j.lithos.2017.11.008.

78. Mänttäri I., Hölttä P., 2002. U-Pb dating of zircons and monazites from Archean granulites in Varpaisjärvi, central Finland: Evidence for multiple metamorphism and Neoarchean terrain accretion. Precambrian Research 118 (1–2), 101–131. https://doi.org/10.1016/S0301-9268(02)00094-3.

79. Nozaka T., Fryer P., Andreani M., 2008. Formation of clay minerals and exhumation of lower-crustal rocks at Atlan-tis Massif, Mid-Atlantic Ridge. Geochemistry, Geophysics, Geosystems 9 (11), Q11005. https://doi.org/10.1029/2008GC002207.

80. O’Hara M.J., 2000. Flood basalts, basalt floods or topless Bushvelds? Lunar petrogenesis revisited. Journal of Petrology 41 (11), 1545–1651. https://doi.org/10.1093/petrology/41.11.1545.

81. Page F.Z., Armstrong L.S., Essene E.J., Mukasa S.B., 2007. Prograde and retrograde history of the Junction School eclogite, California, and an evaluation of garnet-phengite-clinopyroxene thermobarometry. Contributions to Mineralogy and Petrology 153, 533–555. https://doi.org/10.1007/s00410-006-0161-9.

82. Page F.Z., Essene E.J., Mukasa S.B., 2003. Prograde and retrograde history of eclogites from the Eastern Blue Ridge, North Carolina, USA. Journal of Metamorphic Geology 21 (7), 685–698. https://doi.org/10.1046/j.1525-1314.2003.00479.x.

83. Pearce J.A., Cann J.R., 1973. Tectonic setting of basic volcanic rocks determined using trace element analyses. Earth and Planetary Science Letters 19 (2), 290–300. https://doi.org/10.1016/0012-821X(73)90129-5.

84. Perchuk L.L., Krotov A.V., Gerya T.V., 1999. Petrology of the amphibolites of the Tanaelv belt and granulites of the Lapland complex. Petrology 7 (4), 339–363.

85. Puga E., Fanning C.M., Nieto J.M., De Federico A.D., 2005. Recrystallization textures in zircon generated by ocean-floor and eclogite-facies metamorphism: a cathodoluminescence and U-Pb SHRIMP study, with constraints from REE elements. The Canadian Mineralogist 43 (1), 183–202. https://doi.org/10.2113/gscanmin.43.1.183.

86. Rubatto D., 2002. Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology 184 (1–2), 123–138. https://doi.org/10.1016/S0009-2541(01)00355-2.

87. Rubatto D., 2017. Zircon: The metamorphic mineral. Reviews in Mineralogy and Geochemistry 83 (1), 261–295. https://doi.org/10.2138/rmg.2017.83.9.

88. Rubatto D., Angiboust S., 2015. Oxygen isotope record of oceanic and high-pressure metasomatism: a P-T-time-fluid path for the Monviso eclogites (Italy). Contributions to Mineralogy and Petrology 170 (44), 1–16. https://doi.org/10.1007/s00410-015-1198-4.

89. Rubatto D., Hermann J., 2007. Zircon behaviour in deeply subducted rocks. Elements 3 (1), 31–35. https://doi.org/10.2113/gselements.3.1.31.

90. Scherer E.E., Cameron K.L., Blichert-Toft J., 2000. Lu–Hf garnet geochronology: closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions. Geochimica et Cosmochimica Acta 64 (19), 3413–3432. https://doi.org/10.1016/S0016-7037(00)00440-3.

91. Schmidt A., Mezger K., O'Brien P.J., 2011. The time of eclogite formation in the ultrahigh pressure rocks of the Sulu terrane. Constrains from Lu–Hf garnet geochronology. Lithos 125 (1–2), 743–756. https://doi.org/10.1016/j.lithos.2011.04.004.

92. Seck H.A., Kötz J., Okrusch M., Seidel E., Stosch H.G., 1996. Geochemistry of a metaophiolite suite: an association of meta-gabbros, eclogites and glaucophanites on the island of Syros, Greece. European Journal of Mineralogy 8 (3), 607–624. https://doi.org/10.1127/ejm/8/3/0607.

93. Seyfried W.E. Jr., Shanks W.C. III, Dibbe W.E. Jr., 1978. Clay mineral formation in DSDP Leg 34 basalt. Earth and Planetary Science Letters 41 (3), 265–276. https://doi.org/10.1016/0012-821X(78)90183-8.

94. Sharkov E.V., Bogina M.M., Chistyakov A.V., Belyatsky B.V., Antonov A.V., Lepekhina E.N., Shchiptsov V.V., 2015. Genesis and age of zircon from alkali and mafic rocks of the Elet’ozero complex, North Karelia. Petrology 23 (3), 259–280. https://doi.org/10.1134/S0869591115030066.

95. Shchipansky A.A., Khodorevskaya L.I., Slabunov A.I., 2012. The geochemistry and isotopic age of eclogites from the Belomorian Belt (Kola Peninsula): evidence for subducted Archean oceanic crust. Russian Geology and Geophysics 53 (3), 262–280. https://doi.org/10.1016/j.rgg.2012.02.004.

96. Shchukina E.V., Agashev A.M., Soloshenko N.G., Streletskaya M.V., Zedgenizov D.A., Shchukin V.S., Pokhilenko N.P., 2017. Origin of coarse-granular and equigranular eclogites from V. Grib kimberlite pipe, Arkhangelsk region, NW Russia. In: 11-th International Kimberlite conference, Extended Abstracts. No. 11IKC-4456.

97. Shchukina E.V., Agashev A.M., Zedgenizov D.A., 2018. Origin of zircon-bearing mantle eclogites entrained in the V. Grib kimberlite (Arkhangelsk region, NW Russia): Evidence from mineral geochemistry and the U-Pb and Lu-Hf isotope compositions of zircon. Mineralogy and Petrology 112 (1), 85–100. https://doi.org/10.1007/s00710-018-0581-z.

98. Shu Q., Brey G.P., Gerdes A., Hoefer H., 2014. Mantle eclogites and garnet pyroxenites – the meaning of two-point isochrons, Sm–Nd and Lu–Hf closure temperatures and the cooling of the subcratonic mantle. Earth and Planetary Science Letters 389, 143–154. https://doi.org/10.1016/j.epsl.2013.12.028.

99. Skora S., Baumgartner L.P., Mahlen N.J., Lapen T.J., Johnson C.M., Bussy F., 2008. Estimation of a maximum Lu diffusion rate in a natural eclogite garnet. Swiss Journal of Geosciences 101 (3), 637–650. https://doi.org/10.1007/s00015-008-1268-y.

100. Skublov S.G., Astaf'ev B.Yu., Berezin A.V., Marin Yu.B., Mel'nik A.E., Presnyakov S.L., 2011b. New data on the age of eclogites from the Belomorian Mobile Belt at Gridino settlement area. Doklady EarthSciences 439 (2), 1163–1170. https://doi.org/10.1134/S1028334X11080290.

101. Skublov S.G., Balashov Yu.A., Marin Yu.B., Berezin A.V., Mel'nik A.E., Paderin I.P., 2010b. U-Pb age and geochemistry of zircons from Salma eclogites (Kuru-Vaara deposit, Belomorian Belt). Doklady Earth Sciences 432 (2), 791–798. https://doi.org/10.1134/S1028334X10060188.

102. Skublov S.G., Berezin A.V., Berezhnaya N.G., 2012. General relations in the trace-element composition of zircons from eclogites with implications for the age of eclogites in the Belomorian mobile belt. Petrology 20 (5), 427–449. https://doi.org/10.1134/S0869591112050062.

103. Skublov S.G., Berezin A.V., Mel’nik A.E., 2011a. Paleoproterozoic eclogites in the Salma area, northwestern Belomorian Mobile Belt: Composition and isotopic geochronologic characteristics of minerals and metamorphic age. Petrology 19 (5), 470–495. https://doi.org/10.1134/S0869591111050055.

104. Скублов С.Г., Березин А.В., Мельник А.Е., Ли С.-Х., Рубатто Д., Хервартц Д. Палеопротерозойские эклогиты Беломорского пояса: данные радиогенных и стабильных изотопов для породообразующих и акцессорных минералов // В кильватере большого корабля: современные проблемы магматизма, метаморфизма и геодинамики: Материалы III конференции, посвященной 85-летию со дня рождения заслуженного профессора МГУ Л.Л. Перчука. Черноголовка, 2018. С. 67–68.

105. Skublov S.G., Berezin A.V., Rizvanova N.G., Bogomolov E.S., Sergeeva N.A., Vasil'eva I.M., Guseva V.F., Marin Yu.B., 2010a. Complex isotopic-geochemical (Sm-Nd, U-Pb) study of Salma eclogites. Doklady Earth Sciences 434 (2), 1396–1400. https://doi.org/10.1134/S1028334X10100247.

106. Skublov S.G., Mel'nik A.E., Berezin A.V., Bogomolov E.S., Marin Yu.B., Ishmurzin F.I., 2013. New data on the age (U-Pb, Sm-Nd) of metamorphism and a protolith of eclogite-like rocks from the Krasnaya Guba area, Belomorian belt. Doklady Earth Sciences 453 (1), 1158–1164. https://doi.org/10.1134/S1028334X13110184.

107. Слабунов А.И., Король Н.Е., Бережная Н.Г., Володичев О.И., Сибелев О.С., 2011. Главные стадии формирования основных гранулитов Онежского комплекса Карельского кратона: петрология и изотопный возраст (SHRIMP-II) цирконов // Гранулитовые и эклогитовые комплексы в истории Земли: Материалы научной конференции и путеводитель научных экскурсий. Петрозаводск: Карельский научный центр РАН, 2011. С. 215–217.

108. Slabunov A.I., Lobach-Zhuchenko S.B., Bibikova E.V., Balagansky V.V., Sorjonen-Ward P., Volodichev O.I., Shchipansky A.A., Svetov S.A., Chekulaev V.P., Arestova N.A., Stepanov V.S., 2006. The Archean of the Baltic shield: Geology, geochronology, and geodynamic settings. Geotectonics 40 (6), 409–433. https://doi.org/10.1134/S001685210606001X.

109. Слабунов А.И., Володичев О.И., Король Н.Е., Сибелев О.С., Бережная Н.Г., Ларионов А.Н. Архейские гранулитовые комплексы Карельского кратона: петрология, геохронология, геодинамика // Петрография магматических и метаморфических горных пород: Материалы XII Всероссийского петрографического совещания с участием зарубежных ученых / Ред. А.И. Голубев, В.В. Щипцов. Петрозаводск: Карельский научный центр РАН, 2015. С. 503–506.

110. Smit M.A., Scherer E.E., Mezger K., 2013. Lu–Hf and Sm–Nd garnet geochronology: chronometric closure and implications for dating petrological processes. Earth and Planetary Science Letters 381, 222–233. https://doi.org/10.1016/j.epsl.2013.08.046.

111. Smith D., Griffin W.L., 2005. Garnetite xenoliths and mantle–water interactions below the Colorado Plateau, Southwestern United States. Journal of Petrology 46 (9), 1901–1924. https://doi.org/10.1093/petrology/egi042.

112. Spandler C., Hermann J., Rubatto D., 2004. Exsolution of thortveitite, yttrialite, and xenotime during low temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. American Мineralogist 89 (11–12), 1795–1806. https://doi.org/10.2138/am-2004-11-1226.

113. Stepanova A., Stepanov V., 2010. Paleoproterozoic mafic dyke swarms of the Belomorian Province, eastern Fennoscandian Shield. Precambrian Research 183 (3), 602–616. https://doi.org/10.1016/j.precamres.2010.08.016.

114. Streckeisen A.L., 1976. To each plutonic rock its proper name. Earth Science Reviews 12 (1), 1–33. https://doi.org/10.1016/0012-8252(76)90052-0.

115. Светов С.А. Магматические системы зоны перехода океан – континент в архее восточной части Фенноскандинавского щита. Петрозаводск: Карельский научный центр РАН, 2005. 230 с.

116. Светов С.А., Медведев П.В. Мезоархейские хемогенные силициты – уникальная среда сохранности ранней жизни // Литосфера. 2013. № 6. С. 3–13.

117. Thy P., 2003. Igneous petrology of gabbros from Hole 1105A: oceanic magma chamber processes. In: J.F. Casey, D.J. Miller (Eds), Proceedings of the Ocean Drilling Program Scientific Results, vol. 179, p. 1–76. Available from: http://www-odp.tamu.edu/publications/179_SR/VOLUME/CHAPTERS/SR179_02.PDF.

118. Trail D., Watson E.B., Tailby N.B., 2012. Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochimica et Cosmochimica Acta 97 (15), 70–87. https://doi.org/10.1016/j.gca.2012.08.032.

119. Valley J.W., Chiarenzelly J.R., McLelland J.M., 1994. Oxygen isotope geochemistry of zircon. Earth and Planetary Science Letters 126 (4), 187–206. https://doi.org/10.1016/0012-821X(94)90106-6.

120. Volodichev O.I., Slabunov A.I., Bibikova E.V., Konilov A.N., Kuzenko T.I., 2004. Archean eclogites in the Belomorian mobile belt, Baltic Shield. Petrology 12 (6), 540–560.

121. Володичев О.И., Слабунов А.И., Сибелев О.С., Лепехина Е.Н. Геохронология (SHRIMP-II) цирконов из палеопротерозойских эклогитов района с. Гридино (Беломорская провинция) // Изотопные системы и время геологических процессов: Материалы IV Российской конференции по изотопной геохронологии. СПб.: ИГГД РАН, 2009. Т. 1. С. 110–112.

122. Volodichev O.I., Slabunov A.I., Sibelev O.S., Skublov S.G., Kuzenko T.I., 2012. Geochronology, mineral inclusions, and geochemistry of zircons in eclogitized gabbronorites in the Gridino Area, Belomorian Province. Geochemistry International 50 (8), 657–670. https://doi.org/10.1134/S0016702912060080.

123. Володичев О.И., Слабунов А.И., Степанов В.С., Сибилев О.С., Травин В.В., Степанова А.И., Бабарина И.И. Архейские и палеопротерозойские эклогиты и палеопротерозойские друзиты района с. Гридино (Белое море) // Беломорский подвижный пояс и его аналоги: геология, геохронология, геодинамика, минерагения. Петрозаводск: ГИ КарНЦ РАН, 2005. С. 60–74.

124. Wang A.D., Liu Y.C., Santosh M., Gu X.F., 2013. Zircon U-Pb geochronology, geochemistry and Sr-Nd-Pb isotopes from the metamorphic basement in the Wuhe Complex: Implications for Neoarchean active continental margin along the southeastern North China Craton and constraints on the petrogenesis of Mesozoic granitoids. Geoscience Frontiers 4 (1), 57–71. https://doi.org/10.1016/j.gsf.2012.05.001.

125. Whitehouse M.J., Kamber B.S., 2002. On the overabundance of light rare earth elements in terrestrial zircons and its implication for Earth’s earliest magmatic differentiation. Earth and Planetary Science Letters 204 (3–4), 333–346. https://doi.org/10.1016/S0012-821X(02)01000-2.

126. Whitehouse M.J., Platt J.P., 2003. Dating high-grade metamorphism – constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology 145 (1), 61–74. https://doi.org/10.1007/s00410-002-0432-z.

127. Wood D.A., 1980. The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary volcanic province. Earth and Planetary Science Letters 50 (1), 11–30. https://doi.org/10.1016/0012-821X(80)90116-8.

128. Yu H.L., Zhang L.F., Wei C.J., Li X.L., Guo J.H., 2017. Age and P–T conditions of the Gridino-type eclogite in the Belo­morian Province, Russia. Journal of Metamorphic Geology 35, 855–869. https://doi.org/10.1111/jmg.12258.

129. Yu H., Zhang L., Zhang L., Wei C., Li X., Guo J., Bader T., Qi Yu., 2019. The metamorphic evolution of Salma-type eclogite in Russia: Constraints from zircon/titanite dating and phase equilibria modeling. Precambrian Research 326, 363–384. https://doi.org/10.1016/j.precamres.2018.01.019.

130. Zeh A., Cabral A.R., Koglin N., Decker M., 2018. Rutile alteration and authigenic growth in metasandstones of the Moeda Formation, Minas Gerais, Brazil – A result of Transamazonian fluid–rock interaction. Chemical Geology 483, 397–409. https://doi.org/10.1016/j.chemgeo.2018.03.007.

131. Zhang Z.M., Dong X., Xiang H., Liou J.G., Santosh M., 2013. Building of the deep Gangdese arc, South Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology 54 (12), 2547–2580. https://doi.org/10.1093/petrology/egt056.

132. Zhao G., Cawood P.A., Wilde S.A., Sun M., 2002. Review of global 2.1–1.8 Ga orogens: implications for a pre-Rodinia supercontinent. Earth-Science Reviews 59 (1–4), 125–162. https://doi.org/10.1016/S0012-8252(02)00073-9.

133. Зингер Т.Ф. Морфогенетическая эволюция циркона в полиметаморфических породах // Доклады АН. 1993. Т. 331. № 4. С. 452–455.

134. Zong K.Q., Zhang Z.M., He Z.Y., Hu Z.C., Santosh M., Liu Y.S, Wang W., 2012. Early Palaeozoic high-pressure granulites from the Dunhuang block, northeastern Tarim Craton: constraints on continental collision in the southern Central Asian Orogenic Belt. Journal of Metamorphic Geology 30 (8), 753–768. https://doi.org/10.1111/j.1525-1314.2012.00997.x.


Рецензия

Для цитирования:


Минц М.В., Докукина К.А. СУБДУКЦИОННЫЕ ЭКЛОГИТЫ БЕЛОМОРСКОЙ ЭКЛОГИТОВОЙ ПРОВИНЦИИ (ВОСТОК ФЕННОСКАНДИНАВСКОГО ЩИТА, РОССИЯ): МЕЗОАРХЕЙ, НЕОАРХЕЙ ИЛИ ПОЗДНИЙ ПАЛЕОПРОТЕРОЗОЙ? Геодинамика и тектонофизика. 2020;11(1):151-200. https://doi.org/10.5800/GT-2020-11-1-0469

For citation:


Mints M.V., Dokukina K.A. THE BELOMORIAN ECLOGITE PROVINCE (EASTERN FENNOSCANDIAN SHIELD, RUSSIA): MESO-NEOARCHEAN OR LATE PALEOPROTEROZOIC? Geodynamics & Tectonophysics. 2020;11(1):151-200. (In Russ.) https://doi.org/10.5800/GT-2020-11-1-0469

Просмотров: 1011


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)