Preview

Геодинамика и тектонофизика

Расширенный поиск

КЛАСТИЧЕСКИЕ ДАЙКИ И ИХ ЗНАЧЕНИЕ ДЛЯ ИЗУЧЕНИЯ ЗЕМЛЕТРЯСЕНИЙ

https://doi.org/10.5800/GT-2019-10-2-0423

Полный текст:

Аннотация

Кластические дайки часто являются единственным свидетельством прошлых стихийных бедствий на слабообнаженных территориях, поэтому их находки исключительно важны, в том числе и для изучения землетрясений. Однако процессы, которые приводят к их формированию, многообразны, что сильно осложняет использование кластических даек для оценки сейсмической опасности в разных окружающих обстановках. Настоящая статья систематизирует главные триггеры, механизмы формирования и некоторые характерные для них признаки пластинообразных и цилиндрических геологических тел с особым акцентом на важность выявления инъекционных даек, образование которых происходит в результате внедрения разжиженного материала снизу вверх в осадочные слои вследствие действия аномально высокого порового дав‐ ления и разрывообразования. На основе ревизии известных признаков сейсмического разжижения и конкретных описаний инъекционных даек сформулировано 12 общих и 12 индивидуальных геолого‐ структурных критериев, применение которых непосредственно на обнажении позволяет достаточно точно установить их происхождение, связанное с землетрясениями, и исключить несейсмогенные триггеры. В дополнение по георадиолокационным данным, заверенным прямыми наблюдениями в канавах, выделено четыре поисковых признака, которые позволяют предварительно идентифицировать инъекционные дайки на радарограммах: трубообразная форма аномалии или сочетание трубообразной формы в нижней части с изо‐ метричной – в верхней [i]; относительно высокие значения однополярных положительных амплитуд сигналов [ii]; наличие одной и той же аномалии на соседних параллельных профилях, расположенных в пределах первых десятков метров друг от друга [iii]; стратиграфические разрывы осей синфазности на фоне их непре‐ рывного субгоризонтального положения (iv). Статья иллюстрирует возможности использования кластических даек для палеосейсмогеологических реконструкций, а именно для определения возраста и интервала повторяемости землетрясений, местоположения эпицентра, минимально возможной магнитуды и макросей‐ смической интенсивности по шкале MSK‐64. Таким образом, кластические дайки могут обеспечивать базовые геологические данные для оценки сейсмической опасности регионов, в которых рыхлые отложения, способные к разжижению, широко распространены.

Об авторе

О. В. Лунина
Институт земной коры СО РАН
Россия

Оксана Викторовна Лунина - доктор геолого-минералогических наук, ведущий научный сотрудник

664033, Иркутск, ул. Лермонтова, 128



Список литературы

1. Alexeev S., Alexeeva L., Kononov A., 2014. Cryogenic deformation structures in Late Cenozoic unconsolidated sediments of the Tunka depression in the Baikal Rift Zone. Permafrost and Periglacial Process 15 (2), 117–126. https://doi.org/10.1002/ppp.1809.

2. Alfaro P., Delgado J., Estevez A., Molina J.M., Moretti M., Soria J.M., 2002. Liquefaction and fluidization structures in Messinian storm deposits (Bajo Segura Basin, Betic Cordillera, southern Spain). International Journal of Earth Sciences 91 (3), 505–513. https://doi.org/10.1007/s00531-001-0241-z.

3. Al-Shukri H.J., Mahdi H., Tuttle M., 2006. Three-dimensional imaging of earthquake-induced liquefaction features with ground penetrating radar near Marianna, Arkansas. Seismological Research Letters 77 (4), 505–513. https://doi.org/10.1785/gssrl.77.4.505.

4. Ambraseys N.N., 1988. Engineering Seismology. Earthquake Engineering and Structural Dynamics 17 (1), 1–105. https://doi.org/10.1002/eqe.4290170101.

5. Anand A., Jain A.K., 1987. Earthquakes and deformational structures (seismites) in Holocene sediments from the HimalayanAndaman Arc, India. Tectonophysics 133 (1–2), 105–120. https://doi.org/10.1016/0040-1951(87)90284-8.

6. Артюшков Е.В. О возможности возникновения и общих закономерностях развития конвективной неустойчивости в осадочных породах // Доклады АН СССР. 1963. Т. 153. № 1. С. 162–165.

7. Артюшков Е.В. Основные формы конвективных структур в осадочных породах // Доклады АН СССР. 1963. Т. 153. № 2. С. 412–415.

8. Audemard F.A., de Santis F., 1991. Survey of liquefaction structures induced by recent moderate earthquakes. Bulletin of the International Association of Engineering Geology 44 (1), 5–16. https://doi.org/10.1007/BF02602705.

9. Baradello L., Accaino F., 2016. GPR and high resolution seismic integrated methods to understand the liquefaction phenomena in the Mirabello Village (earthquake ML 5.9, 2012). Engineering Geology 211, 1–6. https://doi.org/10.1016/j.enggeo.2016.06.027.

10. Bezerra F.H.R., da Fonseca V.P., Filho F.P.L., 2001. Seismites: origin, criteria for identification and examples from the Quaternary record of Northeastern Brazil. Pesquisas em Geociencias 28 (2), 205–212. https://doi.org/10.22456/1807-9806.20295.

11. Bonilla M.G., Lienkaemper J.J., 1991. Factors affecting the recognition of faults exposed in exploratory trenches. United States Geological Survey Bulletin, No. 1947, 54 p. https://doi.org/10.3133/b1947.

12. Borchardt G., Mace N., 1992. Clastic dike as evidence for a major earthquake along the Northern Hayward fault in Berkeley. In: Proceedings of Second Conference on earthquake hazards in the Eastern San Francisco Bay area. California Department of Conservation. Division of Mines and Geology Special Publication, vol. 113, p. 143–151.

13. Braccini E., de Boer W., Hurst A., Huuse A., Vigorito M., Templeton G., 2008. Sand injectites. Oilfield Review (Summer issue), 34–49.

14. Bump J. D., 1951. The White River Badlands of South Dakota. In: Guide Book of Fifth Field conference of the Society of vertebral paleontology in Western South Dakota. Museum of Geology, South Dakota School of Mines and Technology, Rapid City, South Dakota, p. 35–46.

15. Castilla R.A., Audemard F.A., 2007. Sand blows as a potential tool for magnitude estimation of pre-instrumental earthquakes. Journal of Seismology 11 (4), 473–487. https://doi.org/10.1007/s10950-007-9065-z.

16. Chen J., Van Loon A.J., Han Z., Chough S.K., 2009. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sedimentary Geology 221 (1–4), 1–6. https://doi.org/10.1016/j.sedgeo.2009.09.006.

17. Cooley S., 2011. Bibliography of Clastic Dike Research. Version 12.2011. Available from: http://gis4geomorpho logy.com/wp-content/uploads/2014/02/Cooley-2011-Bibliography-of-Clastic-Dike-Research.pdf (last accessed 25.07.2018).

18. Cooley S., 2015. Clastic dikes of the Columbia Basin. Available from: https://www.skyecooley.com/single-post/2015/07/22/Clastic-Dikes-of-the-Columbia-Basin-1 (last accessed 25.10.2017).

19. Cooley S.W., Pidduck B.K., Pogue K.R., 1996. Mechanism and timing of emplacement of clastic dikes in the Touchet Beds of the Walla Walla Valley, south-central Washington. In: Geological Society of America Abstracts with Programs, vol. 28 (5), p. 57.

20. Cox R.T., Hill A.A., Larsen D., Holzer T., Forman S.L., Noce T., Gardner C., Morat J., 2007. Seismotectonic implications of sand blows in the southern Mississippi Embayment. Engineering Geology 89 (3–4), 278–299. https://doi.org/10.1016/j.enggeo.2006.11.002.

21. Данилов И.Д. Мерзлотные и псевдомерзлотные клиновидные деформации в осадочных породах // Проблемы криолитологии. Вып. 2 / Ред. А.И. Попов. М.: Изд-во МГУ, 1972. С. 31–48.

22. Darwin C.R., 1846. Geological Observations on South America. Being the Third Part of the Geology of the Voyage of the Beagle, Under the Command of Capt. Fitzroy R.N. During the Years 1832–1836. Smith Elder and Co., London, 337 p. Available from: http://darwin-online.org.uk/converted/pdf/1846_SouthAmerica_F273.pdf (last accessed 25.07.2018).

23. Deev E.V., Zolnikov I.D., Gus’kov S.A., 2009. Seismites in Quaternary sediments of southeastern Altai. Russian Geology and Geophysics 50 (6), 703–722. https://doi.org/10.1016/j.rgg.2008.10.004.

24. Deev E.V., Zolnikov I.D., Lobova E.Yu., 2015. Late Pleistocene – Holocene coseismic deformations in the Malyi Yaloman River Valley (Gorny Altai). Russian Geology and Geophysics 56 (9), 1256–1272. https://doi.org/10.1016/j.rgg.2015.08.003.

25. Dionne J.C., Shilts W.W., 1974. A Pleistocene clastic dike, upper Chaudiere valley, Quebec. Canadian Journal of Earth Sciences 11 (11), 1594–1605. https://doi.org/10.1139/e74-158.

26. Ewertowski M., 2009. Ice-wedge pseudomorphs and frost-cracking structures in Weichselian sediments, Central-West Poland. Permafrost and Periglacial Processes 20 (4), 316–330. https://doi.org/10.1002/ppp.657.

27. Fecht K.R., Lindsey K.A., Bjornstad B.N., Horton D.G., Last G.V., Reidel S.P., 1999. Clastic injection dikes of the Pasco Basin and vicinity. Bechtel Hanford Inc. Report, BHI-01103, 217 p. Available from: https://www.nrc.gov/docs/ML0901/ML090120243.pdf (last accessed 11.09.2018).

28. Feng Z.-Z., 2017. A brief review on 7 papers from the special issue of “The environmental significance of soft-sediment deformation” of the Sedimentary Geology 344 [2016]. Journal of Palaeogeography 6 (4), 243–250. https://doi.org/10.1016/j.jop.2017.07.001.

29. Galli P., 2000. New empirical relationships between magnitude and distance for liquefaction. Tectonophysics 324 (3), 169–187. https://doi.org/10.1016/S0040-1951(00)00118-9.

30. Гарецкий Р.Г. Кластические дайки // Известия АН СССР, серия геологическая. 1956. № 3. С. 81–103.

31. Gileva N.A., Mel’nikova V.I., Radziminovich N.A., Déverchère J., 2000. Location of earthquakes and average parameters of the crust in some areas of the Baikal region. Geologiya i Geofizika (Russian Geology and Geophysics) 41 (5), 609–615.

32. Goździk J., van Loon A.J., 2007. The origin of a giant downward directed clastic dyke in a kame (Bełchatów mine, central Poland). Sedimentary Geology 193 (1–4), 71–79. https://doi.org/10.1016/j.sedgeo.2006.02.008.

33. Greb S.F., Dever G.R., 2002. Critical evaluation of possible seismites: examples from the Carboniferous of the Appalachian basin. In: F.R. Ettensohn, N. Rast, C.E. Brett (Eds.), Ancient seismites. Geological Society of America Special Paper, vol. 359, p. 109–125. https://doi.org/10.1130/0-8137-2359-0.109.

34. Green R.A., Obermeier S.F., Olson S.M., 2005. Engineering geologic and geotechnical analysis of paleoseismic shaking using liquefaction effects: field examples. Engineering Geology 76 (3–4), 263–293. https://doi.org/10.1016/j.enggeo.2004.07.026.

35. Hargitai H., Levi T., 2015. Clastic dike. In: H. Hargitai, Á. Kereszturi (Eds.), Encyclopedia of Planetary Landforms. Springer Science+Business Media, New York, p. 307–313.

36. Hsu C.-C., Lee D.-H., Ku C.-S., 2005. A case investigation of liquefaction features in a Coastal industrial park by using ground penetrating radar. In: The Fifteenth International Offshore and Polar Engineering Conference. Seoul, Korea. International Society of Offshore and Polar Engineers Publisher, p. 1–6.

37. Ito M., Ishimoto S., Ito K., Kotake N., 2016. Geometry and lithofacies of coarse-grained injectites and extrudites in a late Pliocene trench-slope basin on the southern Boso Peninsula, Japan. Sedimentary Geology 344, 336–349. https://doi.org/10.1016/j.sedgeo.2016.02.015.

38. Iverson R.M., George D.L., Allstadt K., Reid M.E., Collins B.D., Vallance J.W., Schilling S.P., Godt J.W., Cannon C.M., Magirl C.S., Baum R.L., Coe J.A., Schulz W.H., Bower J.B., 2015. Landslide mobility and hazards: implications of the 2014 Oso disaster. Earth and Planetary Science Letters 412, 197–208. https://doi.org/10.1016/j.epsl.2014.12.020.

39. Jacoby Y., Weinberger R., Levi T., Marco S., 2015. Clastic dikes in the Dead Sea basin as indicators of local site amplification. Natural Hazards 75 (2), 1649–1676. https://doi.org/10.1007/s11069-014-1392-0.

40. Jenkins O.P., 1925. Clastic dikes of Eastern Washington and their geologic significance. American Journal of Science 10 (57), 234–246. https://doi.org/10.2475/ajs.s5-10.57.234.

41. Jolly R.J.H., Lonergan L., 2002. Mechanisms and controls on the formation of sand intrusions. Journal of the Geological Society 159 (5), 605–617. https://doi.org/10.1144/0016-764902-025.

42. Jonk R., Duranti D., Parnell J., Hurst A., Fallick A.E., 2003. The structural and diagenetic evolution of injected sandstones: examples from the Kimmeridgian of NE Scotland. Journal of the Geological Society 160 (6), 881–894. https://doi.org/10.1144/0016-764902-091.

43. KholoХолодов В.Н. Песчаный диапиризм – новая сторона катагенетических процессов. Сообщение I. Морфология, состав и условия образования песчаных даек и “горизонтов с включениями” в миоцене Восточного Предкавказья // Литология и полезные ископаемые. 1978. № 4. С. 50–66.

44. Kholodov V.N., 2002. Mud volcanoes: distribution regularities and genesis (Communication 2. Geological–geochemical peculiarities and formation model). Lithology and Mineral Resources 37 (4), 293–310. https://doi.org/10.1023/A:1019955921606.

45. Korzhenkov A.M., Avanesian M.A., Karakhanian A.S., Virgino A., 2014. Seismic convolutions in the Quaternary deposits of Lake Sevan, Armenia. Russian Geology and Geophysics 55 (1), 46–53. https://doi.org/10.1016/j.rgg.2013.12.003.

46. Костяев А.Г. Диагенетические клиновидные формы в современных аллювиальных отложениях бассейна Нижнего Омолоя // Проблемы криолитологии. Вып. 1 / Ред. А.И. Попов. М.: Изд-во МГУ, 1969. С. 63–79.

47. Kring D.A., Hörz F., Zurcher L., Fucugauchi U., 2004. Impact lithologies and their emplacement in the Chicxulub impact crater: initial results from the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico. Meteoritics & Planetary Science 39 (6), 879–897. https://doi.org/10.1111/j.1945-5100.2004.tb00936.x.

48. Kuribayashi E., Tatsuoka F., 1975. Brief review of liquefaction during earthquakes in Japan. Soils and Foundations 15 (4), 81–92. https://doi.org/10.3208/sandf1972.15.4_81.

49. Larsen E., Mangerud J., 1992. Subglacially formed clastic dikes. Sveriges Geologiska Undersökning, series Ca 81, 163–170.

50. Le Roux J.P., Nielsen S.N., Kemnitz H., Henriquez Á., 2008. Pliocene mega-tsunami deposit and associated features in the Ranquil Formation, southern Chile. Sedimentary Geology 203 (1–2), 164–180. https://doi.org/10.1016/j.sedgeo.2007.12.002.

51. Levi T., Weinberger R., Aïfa T., Eyal Y., Marco S., 2006. Injection mechanism of clay-rich sediments into dikes during earthquakes. Geochemistry, Geophysics, Geosystems 7 (12), Q12009. https://doi.org/10.1029/2006GC001410.

52. Levi T., Weinberger R., Eyal Y., 2009. Decay of dynamic fracturing based on three-dimensional measurements of clasticdike geometry. Journal of Structural Geology 31 (8), 831–841. https://doi.org/10.1016/j.jsg.2009.06.002.

53. Levi T., Weinberger R., Eyal Y., 2011. A coupled fluid-fracture approach to propagation of clastic dikes during earthquakes. Tectonophysics 498 (1–4), 35–44. https://doi.org/10.1016/j.tecto.2010.11.012.

54. Li Y., Craven J., Schweig E.S., Obermeier S.F., 1996. Sand boils induced by the 1993 Mississippi River flood: could they one day be misinterpreted as earthquake induced liquefaction? Geology 24 (2), 171–174. https://doi.org/10.1130/0091-7613(1996)024<0171:SBIBTM>2.3.CO;2.

55. Liu L., Li Y., 2001. Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA. Journal of Applied Geophysics 47 (3–4). 199–215. https://doi.org/10.1016/S09269851(01)00065-9.

56. Liu Y., Xie J.F., 1984. Seismic liquefaction of sand. Earthquake Press, Beijing, China (in Chinese).

57. Lunina O.V., Andreev A.V., Gladkov A.A., 2014. Geological hazards associated with seismogenic faulting in southern Siberia and Mongolia: forms and location patterns. Russian Geology and Geophysics 55 (8), 1017–1031. https://doi.org/10.1016/j.rgg.2014.07.010.

58. Lunina O.V., Andreev A.V., Gladkov A.S., 2012. The Tsagan earthquake of 1862 on Lake Baikal revisited: a study of secondary coseismic soft-sediment deformation. Russian Geology and Geophysics 53 (6), 571–587. https://doi.org/10.1016/j.rgg.2012.04.007.

59. Lunina O.V., Andreev A.V., Gladkov A.S., 2015. The 1950 Mw=6.9 Mondy earthquake in southern East Siberia and associated deformations: facts and uncertainties. Journal of Seismology 19 (1), 171–189. https://doi.org/10.1007/s10950-014-9457-9.

60. Lunina O.V., Gladkov A.S., 2015. Seismically induced clastic dikes as a potential approach for the estimation of the lower-bound magnitude/intensity of paleoearthquakes. Engineering Geology 195, 206–213. https://doi.org/10.1016/j.enggeo.2015.06.008.

61. Lunina O.V., Gladkov A.S., 2016. Soft-sediment deformation structures induced by strong earthquakes in southern Siberia and their paleoseismic significance. Sedimentary Geology 344, 5–19. https://doi.org/10.1016/j.sedgeo.2016.02.014.

62. Lupher R.L., 1944. Clastic dikes of the Columbia Basin region, Washington and Idaho. Geological Society of America Bulletin 55 (12), 1431–1462. https://doi.org/10.1130/GSAB-55-1431.

63. McCalpin J.P. (Ed.), 2009. Paleoseismology. 2nd edition. Elsevier, Amsterdam, 613 p.

64. McNulty W.E., Obermeier S.F., 1997. Liquefaction evidence for at least two strong Holocene paleo-earthquakes in central and southwestern Illinois, USA. U.S. Geological Survey Open-File Report 97-435, 22 p. Available from: https://pubs.usgs.gov/of/1997/0435/report.pdf (last accessed 25.07.2018).

65. Montenat C., Barrier P., d’Estevou P., 1991. Some aspects of the recent tectonics in the Strait of Messina, Italy. Tectonophysics 194 (3), 203–215. https://doi.org/10.1016/0040-1951(91)90261-P.

66. Montenat C., Barrier P., d’Estevou P.O., Hibsch C., 2007. Seismites: An attempt at critical analysis and classification. Sedimentary Geology 196 (1–4), 5–30. https://doi.org/10.1016/j.sedgeo.2006.08.004.

67. Moretti M., Alfaro P., Caselles O., Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics 304 (4), 369–383. https://doi.org/10.1016/S0040-1951(98)00289-3.

68. Moretti M., Sabato L., 2007. Recognition of trigger mechanisms for soft-sediment deformation in the Pleistocene lacustrine deposits of the SantʻArcangelo Basin (Southern Italy): Seismic shock vs. Overloading. Sedimentary Geology 196 (1–4), 31–45 https://doi.org/10.1016/j.sedgeo.2006.05.012.

69. Newsom J.F., 1903. Clastic dikes. Bulletin of the Geological Society of America 14 (1), 227–268. https://doi.org/10.1130/GSAB-14-227.

70. Nobes D.C., Bastin S., Charlton G., Cook R., Gallagher M., Graham H., Grose D., Hedley J., Scott Sharp-Heward S., Templeton S., 2013. Geophysical imaging of subsurface earthquake-induced liquefaction features at Christchurch Boys High School, Christchurch, New Zealand. Journal of Environmental & Engineering Geophysics 18 (4), 255–267. https://doi.org/10.2113/JEEG18.4.255.

71. Novikov I., Vapnik Y., Safonova I., 2013. Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers 4 (5), 597–619. https://doi.org/10.1016/j.gsf.2013.02.005.

72. Obermeier S.F., 1996. Use of liquefaction-induced features for paleoseismic analysis – An overview of how seismic liquefaction features can be distinguished from other features and how their regional distribution and properties of source sediment can be used to infer the location and strength of Holocene paleo-earthquakes. Engineering Geology 44 (1–4), 1–76. https://doi.org/10.1016/S0013-7952(96)00040-3.

73. Obermeier S.F., 1998. Liquefaction evidence for strong earthquakes of Holocene and Latest Pleistocene ages in the states of Indiana and Illinois, USA. Engineering Geology 50 (3–4), 227–254. https://doi.org/10.1016/S00137952(98)00032-5.

74. Obermeier S.F., Olson S.M., Green R.A., 2005. Field occurrences of liquefaction-induced features: a primer for engineering geologic analysis of paleoseismic shaking. Engineering Geology 76 (3–4), 209–234. https://doi.org/10.1016/j.enggeo.2004.07.009.

75. Onorato M.R., Perucca L., Coronato A., Rabassa J., López R., 2016. Seismically-induced soft-sediment deformation structures associated with the Magallanes – Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina). Sedimentary Geology 344, 135–144. https://doi.org/10.1016/j.sedgeo.2016.04.010.

76. Owen G., Moretti M., 2011. Identifying triggers for liquefaction-induced soft-sediment deformation in sands. Sedimentary Geology 235 (3–4), 141–147. https://doi.org/10.1016/j.sedgeo.2010.10.003.

77. Owen G., Moretti M., Alfaro P., 2011. Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sedimentary Geology 235 (3–4), 133–140. https://doi.org/10.1016/j.sedgeo.2010.12.010.

78. Papadopoulos A.G., Lefkopoulos G., 1993. Magnitude – distance relation for liquefaction in soil from earthquakes. Bulletin of the Seismological Society of America 83 (3), 925–938.

79. Papathanassiou G., Pavlides S., Christaras B., Pitilakis К., 2005. Liquefaction case histories and empirical relations |of earthquake magnitude versus distance from the boarder Aegean region. Journal of Geodynamics 40 (2–3), 257–278. https://doi.org/10.1016/j.jog.2005.07.007.

80. Passchier S., 2000. Soft-Sediment deformation features in core from CRP-2/2A, Victoria Land basin, Antarctica. Terra Antartica 7 (3), 401–412.

81. Porat N., Levi T., Weinberger R., 2007. Possible resetting of quartz OSL signals during earthquakes – evidence from late Pleistocene injection dikes, Dead Sea basin, Israel. Quaternary Geochronology 2 (1–4), 272–277. https://doi.org/10.1016/j.quageo.2006.05.021.

82. Quigley M.C., Bastin S., Bradley B.A., 2013. Recurrent liquefaction in Christchurch, New Zealand, during the Canterbury earthquake sequence. Geology 41 (4), 419–422. https://doi.org/10.1130/G33944.1.

83. Rodríguez-Pascua M.A., Silva P.G., Perucha M.A., Giner-Robles J.L., Heras C., Bastida A.B., Carrasco P., Roquero E., Lario J., Bardaji T., Pérez-López R., Elez J., 2016. Seismically induced liquefaction structures in La Magdalena archaeological site, the 4th century AD Roman Complutum (Madrid, Spain). Sedimentary Geology 344, 34–46. https://doi.org/10.1016/j.sedgeo.2016.01.025.

84. Рогожин Е.А. Очерки региональной сейсмотектоники. М.: ИФЗ РАН, 2012. 340 с.

85. Rossetti D.F., 1999. Soft-sediment deformation structures in Late Albian to Cenomanian deposits, São Luís Basin, Northern Brazil: evidence for palaeoseismicity. Sedimentology 46 (6), 1065–1081. https://doi.org/10.1046/j.1365-3091.1999.00265.x.

86. Rusakov A.V., Nikonov A.A., 2010. Characterization of relict Late Pleistocene and Early Holocene paleosols buried in wedge-shaped structures on the southern coast of the Finnish Gulf. Eurasian Soil Science 43 (7), 737–747. https://doi.org/10.1134/S1064229310070033.

87. Saucier R.T., 1989. Evidence for episodic sand-blow activity during the 1811–12 New Madrid (Missouri) earthquake series. Geology 17 (2), 103–106. https://doi.org/10.1130/0091-7613(1989)017<0103:EFESBA>2.3.CO;2.

88. Seilacher A., 1969. Fault‐graded beds interpreted as seismites. Sedimentology 13 (1–2), 155–159. https://doi.org/10.1111/j.1365-3091.1969.tb01125.x.

89. Seilacher A., 1991. Events and their signatures – an overview. In: G. Einsele, W. Reiken, A. Seilacher (Eds.), Cycles and events in stratigraphy. Springer, Berlin, p. 222–226.

90. Shanmugan G., 2016. The seismite problem. Journal of Palaeogeography 5 (4), 318–362. https://doi.org/10.1016/j.jop.2016.06.002.

91. Shanmugan G., 2017. Global case studies of soft-sediment deformation structures (SSDS): Definitions, classifications, advances, origins, and problems. Journal of Palaeogeography 6 (4), 251–320. https://doi.org/10.1016/j.jop.2017.06.004.

92. Shrock B.R., 1948. Sequence in Layered Rocks. Mc Graw-Hill, New York, 507 p.

93. Sims J.D., 1975. Determining earthquake recurrence intervals from deformational structures in young lacustrine sediments. Tectonophysics 29 (1–4), 141–152. https://doi.org/10.1016/0040-1951(75)90139-0.

94. Sims J.D., Garvin C.D., 1995. Recurrent liquefaction induced by the 1989 Loma Prieta earthquake and 1990 and 1991 aftershocks: implications for paleoseismicity studies. Bulletin of the Seismological Society of America 85 (1), 51–65.

95. Spencer P.K., Jaffee P.K., 2002. Pre-Late Wisconsinan glacial outburst floods in Southeastern Washington – The indirect Record. Washington Geology 30 (1–2), 9–16.

96. Srtangways W.T.H.F., 1821. Geological sketch of the Environs of Petersburg. Transactions of the Geological Society of London 5, 392–458.

97. Talwani P., Hasek M., Gassman S., Doar W.R., Chapman A., 2011. Discovery of a sand blow and associated fault in the epicentral area of the 1886 Charleston Earthquake. Seismological Research Letters 82 (4), 589–598. https://doi.org/10.1785/gssrl.82.4.589.

98. Tuttle M.R., 2001. The use of liquefaction features in paleoseismology: Lessons learned in the New Madrid seismic zone, central United States. Journal of Seismology 5 (3), 361–380. https://doi.org/10.1023/A:1011423525258.

99. Van Loon A.J., 2014. The life cycle of seismite research. Geologos 20 (2), 61–66. https://doi.org/10.2478/logos-20140005.

100. Van Loon A.J., Maulik P., 2011. Abraded sand volcanoes as a tool for recognizing paleo-earthquakes, with examples from the Cisuralian Talchir Formation near Angul (Orissa, eastern India). Sedimentary Geology 238 (1–2), 145–155. https://doi.org/10.1016/j.sedgeo.2011.04.009.

101. Van Vliet-Lanoë B., Magyari A., Meilliez F., 2004. Distinguishing between tectonic and periglacial deformations of quaternary continental deposits in Europe. Global and Planetary Change 43 (1–2), 103–127. https://doi.org/10.1016/j.gloplacha.2004.03.003.

102. Vanneste K., Meghraoui M., Camelbeeck T., 1999. Late Quaternary earthquake-related soft-sediment deformation along the Belgian portion of the Feldbiss Fault, Lower Rhine Graben system. Tectonophysics 309 (1–4), 57–79. https://doi.org/10.1016/S0040-1951(99)00132-8.

103. Wakamatsu K., 1993. History of soil liquefaction in Japan and assessment of liquefaction potential based on geomorphology. A Thesis in the Department of Architecture Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Engineering, Waseda University, Tokyo, Japan, 245 p.

104. Wheeler R.L., 2002. Distinguishing seismic from nonseismic soft-sediment structures: Criteria from seismic-hazard analysis. In: F.R. Ettensohn, N. Rast, C.E. Brett (Eds.), Ancient seismites. Geological Society of America Special Papers, vol. 359, p. 1–11. https://doi.org/10.1130/0-8137-2359-0.1.

105. Youd T.L., 1973. Liquefaction, Flow, and Associated Ground Failure. US Geological Survey Circular 688, 12 p. https://doi.org/10.3133/cir688.

106. Youd T.L., Perkins D.M., 1978. Mapping of liquefaction induced ground failure potential. Journal of the Geotechnical Engineering Division 104 (4), 433–446.


Для цитирования:


Лунина О.В. КЛАСТИЧЕСКИЕ ДАЙКИ И ИХ ЗНАЧЕНИЕ ДЛЯ ИЗУЧЕНИЯ ЗЕМЛЕТРЯСЕНИЙ. Геодинамика и тектонофизика. 2019;10(2):483-506. https://doi.org/10.5800/GT-2019-10-2-0423

For citation:


Lunina О.V. AN OVERVIEW OF CLASTIC DIKES: SIGNIFICANCE FOR EARTHQUAKE STUDY. Geodynamics & Tectonophysics. 2019;10(2):483-506. https://doi.org/10.5800/GT-2019-10-2-0423

Просмотров: 209


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)