Preview

Геодинамика и тектонофизика

Расширенный поиск

ГЕОХИМИЯ И ВОЗРАСТ ПОРОД НИЖНИХ ПЛАСТИН БУТУЛИЙН-НУРСКОГО И ЗАГАНСКОГО КОМПЛЕКСОВ МЕТАМОРФИЧЕСКИХ ЯДЕР (СЕВЕРНАЯ МОНГОЛИЯ – ЗАПАДНОЕ ЗАБАЙКАЛЬЕ)

https://doi.org/10.5800/GT-2014-5-3-0149

Полный текст:

Аннотация

В статье приводится обзор данных по возрасту пород нижних пластин Бутулийн-Нурского и Заганского комплексов метаморфических ядер (КМЯ), а также новые данные по геохимии этих породных комплексов. Отмечено, что самыми древними породами являются милонитизированные гнейсы по риолитам (554 млн лет) нижней пластины Бутулийн-Нурского КМЯ. Максимальное распространение среди образований нижних пластин Бутулийн-Нурского и Заганского КМЯ имеют позднепермские – триасовые (249–211 млн лет) магматические породы. Самыми молодыми породами в изученных КМЯ являются гранитоиды юрского возраста (178–152 млн лет) Наушкинского и Верхнемангиртуйского массивов. Наиболее распространенные среди нижних пластин Бутулийн-Нурского и Заганского КМЯ гранитоиды и вулканиты кислого состава с возрастом 249–211 млн лет обнаруживают во многом сходные геохимические характеристики (повышенная щелочность, высокие содержания Sr и Ba, умеренные и низкие концентрации Nb, Y). По содержаниям редких и редкоземельных элементов данные гранитоиды и вулканиты кислого состава обнаруживают сходство с гранитами I-типа. Особенности составов этих пород позволяют допускать их формирование в обстановке активной континентальной окраины Сибирского континента над погружающейся океанической плитой Монголо-Охотского океана. Наиболее молодые из изученных пород гранитоиды Наушкинского и Верхнемангиртуйского массивов с возрастом 178–152 млн лет также обладают сходными геохимическими характеристиками. Гранитоиды обоих массивов являются железистыми, преимущественно щелочными образованиями. По содержаниям как петрогенных, так и редких элементов они сопоставимы с гранитами А-типа. Формирование этих гранитоидов имело место в условиях внутриконтинентального растяжения на фоне смены субдукционного режима на коллизионный. Рассмотренные в статье материалы по возрасту и геохимии пород нижних пластин Бутулийн-Нурского и Заганского КМЯ показывают, что эти породы хорошо коррелируются с породными комплексами забайкальского и северо-монгольского сегментов ЦАСП, свидетельствуя о единой истории эволюции всего этого региона.

 

Об авторах

Т. В. Донская  
Институт земной коры СО РАН, Иркутск, Россия
Россия

канд. геол.-мин. наук, с.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия



А. М. Мазукабзов
Институт земной коры СО РАН, Иркутск, Россия
Россия

д.г.-м.н., в.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия



Список литературы

1. Barbarin B., 1999. A review of the relationships between granitoid types, their origins and their geodynamic environments. Lithos 46 (3), 605–626. http://dx.doi.org/10.1016/S0024-4937(98)00085-1.

2. Chappell B.W., White A.J.R., 1974. Two contrasting granite types. Pacific Geology 8, 173–174.

3. Chappell B.W., White A.J.R., 1992. I- and S-type granites in the Lachlan Fold Belt. Transactions of the Royal Society of Ed-inburgh: Earth Sciences 83 (1–2), 1–26. http://dx.doi.org/10.1017/S0263593300007720.

4. Dall'Agnol R., Oliveira D.C., 2007. Oxidized, magnetite-series, rapakivi-type granites of Carajás, Brazil: Implications for classification and petrogenesis of A-type granites. Lithos 93 (3–4), 215–233. http://dx.doi.org/10.1016/j.lithos. 2006.03.065.

5. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., De Waele B., Presnyakov S.L., 2012. The Late Triassic Kataev vol-canoplutonic association in western Transbaikalia, a fragment of the active continental margin of the Mongol-Okhotsk Ocean. Russian Geology and Geophysics 53 (1), 22–36. http://dx.doi.org/10.1016/j.rgg.2011.12.002.

6. Donskaya Т.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., 2013. Late Paleozoic – Mesozoic subduction-related magmatism at the southern margin of the Siberian continent and the 150 million-year history of the Mongol-Okhotsk Ocean. Journal of Asian Earth Sciences 62, 79–97. http://dx.doi.org/10.1016/j.jseaes.2012.07.023.

7. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Sklyarov E.V., Lepekhina E.N., Wang T., Zeng L., Guo L., 2014. Continuity of Late Paleozoic – Early Mesozoic Magmatism in the Western Transbaikal Region. Doklady Earth Sciences 458 (1), 1067–1072. http://dx.doi.org/10.1134/S1028334X14090268.

8. Donskaya T.V., Windley B.F., Mazukabzov A.M., Kröner A., Sklyarov E.V., Gladkochub D.P., Ponomarchuk V.A., Badarch G., Reichow M.R., Hegner E., 2008. Age and evolution of Late Mesozoic metamorphic core complexes in Southern Siberia and Northern Mongolia. Journal of the Geological Society, London 165 (1), 405–421. http://dx.doi.org/10.1144/0016-76492006-162.

9. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A geochemical classification for granitic rocks. Journal of Petrology 42 (11), 2033–2048. http://dx.doi.org/10.1093/petrology/42.11.2033.

10. Geological Map of the Southern East Siberia and Northern Mongolia, 1983. Scale 1:1500000. The USSR Ministry of Geology (Mingeo SSSR), Moscow (in Russian) [Геологическая карта юга Восточной Сибири и северной части МНР. М-б 1:1500000. М.: Мингео СССР, 1983].

11. Jahn B.M., Litvinovsky B.A., Zanvilevich A.N., Reichow M., 2009. Peralkaline granitoid magmatism in the Mongolian–Transbaikalian Belt: Evolution, petrogenesis and tectonic significance. Lithos 113 (3–4), 521–539. http://dx.doi.org/ 10.1016/j.lithos.2009.06.015.

12. Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be’eri-Shlevin Y., 2011. Origin and evolution of overlapping calc-alkaline and alkaline magmas: the Late Palaeozoic post-collisional igneous province of Transbaikalia (Russia). Lithos 125 (3–4), 845–874. http://dx.doi.org/10.1016/j.lithos.2011.04.007.

13. Mazukabzov A.M., Donskaya T.V., Gladkochub D.P., Paderin I.P., 2010. The Late Paleozoic geodynamics of the West Transbaikalian segment of the Central Asian fold belt. Russian Geology and Geophysics 51 (5), 482–491. http://dx.doi. org/10.1016/j.rgg.2010.04.008.

14. Mazukabzov A.M., Donskaya, T.V., Gladkochub D.P., Sklyarov E.V., Ponomarchuk V.A., Sal’nikova E.B., 2006. Structure and age of the metamorphic core complex of the Burgutui ridge (Southwestern Transbaikal region). Doklady Earth Sciences 407 (1), 179–183. http://dx.doi.org/10.1134/S1028334X06020048.

15. Mazukabzov A.M., Sklyarov E.V., Donskaya T.V., Gladkochub D.P., Fedorovsky V.S., 2011. Metamorphic core complexes of the Transbaikalia: review. Geodynamics & Tectonophysics 2 (2), 95–125. http://dx.doi.org/10.5800/GT-2011-2-2-0036.

16. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Jounal of Petrology 25 (4), 956–983. http://dx.doi.org/10.1093/petrology/25.4.956.

17. Petrographic Code of Russia, 2009. Igneous, Metamorphic, Metasomatic and Impact Formations. VSEGEI, St. Petersburg. 200 p. (in Russian) [Петрографический кодекс России. Магматические, метаморфические, метасоматические, импактные образования. СПб.: ВСЕГЕИ, 2009. 200 с.].

18. Reichow M.K., Litvinovsky B.A., Parrish R.R., Saunders A.D., 2010. Multi-stage emplacement of alkaline and peralkaline syenite-granite suites in the Mongolian–Transbaikalian Belt, Russia: evidence from U–Pb geochronology and whole-rock geochemistry. Chemical Geology 273 (1–2), 120–135. http://dx.doi.org/10.1016/j.chemgeo.2010.02.017.

19. Saunders A.D., Norry M.J., Tarney J., 1988. Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. Journal of Petrology (Special Lithosphere Issue), 415–445. http://dx.doi.org/10.1093/petrology/Special_Volume. 1.415.

20. Sklyarov E.V., Mazukabzov A.M., Donskaya T.V., Doronina N.A., Shafeev A.A., 1994. The Zagan metamorphic core complex (Transbaikalie). Doklady AN 339 (1), 83–86 (in Russian) [Скляров Е.В., Мазукабзов А.М., Донская Т.В., Доронина Н.А., Шафеев А.А. Заганский комплекс метаморфического ядра (Забайкалье) // Доклады АН. 1994. Т. 339. № 1. С. 83–86].

21. Sklyarov E.V., Mazukabzov A.M., Mel’nikov A.I., 1997. Metamorphic Core Complexes of Cordilleran Type. Publishing House of the Scientific Research Centre of A.A. Trofimuk Institute of Geology, Geophysics and Mineralogy, Siberian Branch of RAS, Novosibirsk, 182 p. (in Russian) [Скляров Е.В., Мазукабзов А.М., Мельников А.И. Комплексы мета-морфических ядер кордильерского типа. Новосибирск: Изд-во СО РАН НИЦ ОИГГМ, 1997. 182 с.].

22. Sun S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes Basins. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the Oceanic. Geological Society, London, Special Publication 42, 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.

23. Tsygankov A.A., Litvinovsky B.A., Jahn B.M., Reichow M.K., Liu D.Y., Larionov A.N., Presnyakov S.L., Lepekhina Y.N., Sergeev S.A., 2010. Sequence of magmatic events in the Late Paleozoic of Transbaikalia, Russia (U-Pb isotope data). Russian Geology and Geophysics 51 (9), 972–994. http://dx.doi.org/10.1016/j.rgg.2010.08.007.

24. Turkina O.M., 2000. Modeling geochemical types of tonalite–trondhjemite melts and their natural equivalents. Geochemistry International 38 (7), 640–651.

25. Turkina O.M., 2005. Proterozoic tonalites and trondhjemites of the Southwestern margin of the Siberian Craton: Isotope geochemical evidence for the lower crustal sources and conditions of melt formation in collisional settings. Petrology 13 (1), 35–48.

26. Volkova N.I., Sklyarov E.V., 2007. High-pressure complexes of Central Asian Fold Belt: geologic setting, geochemistry, and geodynamic implications. Russian Geology and Geophysics 48 (1), 83–90. http://dx.doi.org/10.1016/j.rgg.2006.12.008.

27. Wang T., Guo L., Zheng Y., Donskaya T., Gladkochub D., Zeng L., Li J., Wang Y., Mazukabzov A., 2012. Timing and processes of late Mesozoic mid-lower-crustal extension in continental NE Asia and implications for the tectonic setting of the destruction of the North China Craton: Mainly constrained by zircon U–Pb ages from metamorphic core complexes. Lithos 154, 315–345. http://dx.doi.org/10.1016/j.lithos.2012.07.020.

28. Wang T., Zheng Y., Zhang J., Zeng L., Donskaya T., Guo L., Li J., 2011. Pattern and kinematic polarity of late Mesozoic extension in continental NE Asia: perspectives from metamorphic core complexes. Tectonics 30 (6), TC6007. http://dx. doi.org/10.1029/2011TC002896.

29. Whalen J.B., Currie K.L., Chappel B.W., 1987. A-type granites: geochemical characteristics, discrimination and petrogenesis.

30. Contributions to Mineralogy and Petrology 95 (4), 407–419. http://dx.doi.org/10.1007/BF00402202.


Для цитирования:


Донская   Т.В., Мазукабзов А.М. ГЕОХИМИЯ И ВОЗРАСТ ПОРОД НИЖНИХ ПЛАСТИН БУТУЛИЙН-НУРСКОГО И ЗАГАНСКОГО КОМПЛЕКСОВ МЕТАМОРФИЧЕСКИХ ЯДЕР (СЕВЕРНАЯ МОНГОЛИЯ – ЗАПАДНОЕ ЗАБАЙКАЛЬЕ). Геодинамика и тектонофизика. 2014;5(3):683-701. https://doi.org/10.5800/GT-2014-5-3-0149

For citation:


Donskaya   T.V., Mazukabzov A.M. THE GEOCHEMISTRY AND AGES OF ROCKS IN THE FOOTWALL OF THE BUTULIYN-NUR AND ZAGAN METAMORPHIC CORE COMPLEXES (NORTH MONGOLIA – WESTERN TRANSBAIKALIA). Geodynamics & Tectonophysics. 2014;5(3):683-701. (In Russ.) https://doi.org/10.5800/GT-2014-5-3-0149

Просмотров: 477


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)