Results of the tectonic stress study of the Northern Eurasia regions
https://doi.org/10.5800/GT-2018-9-3-0371
Abstract
The article presents the results obtained by field tectonophysical methods applied to study tectonic stresses of the Northern Eurasia regions, including young and ancient platforms (West European, Timan–Pechora, Turan, West Siberian, East European, and East Siberian) and orogenic frame structures (Caucasus, Northern Tien Shan, Mongolia-Okhotsk system of mesozoids, and Sakhalin Island). Tectonic stress reconstructions provided the basis for analysing the influence of spreading in the North Atlantics and the Arctic on the stress state of the platforms in Northern Europe. A spatial boundary of the influence goes approximately along the margins of the Fennoscandian shield and the Russian plate in the north. Further southwards, the boundary is submeridional and extends from the western wing of the Byelorussian anteclise almost to the Eastern Carpathians. The stress reconstructions for this boundary show the WNW and W-E-trending axes of compression. The boundary line does not coincide with the Teisser-Tornquist line that represents the boundary between the platforms with heterochronous basements. However, it correlates well with heat flow anomalies. The boundary area is confined to the Baltic coast [Sim, 2000. Along the boundary area, near the Baltic Sea, there is an area wherein faulting is mainly caused by extension [Sim, 2000. In this setting, helium permeability is the highest, as shown by the crust map of the European part of the USSR [Eremeev, 1983. Extension in this area is probably related to formation of young grabens in the Baltic shield. Changes in the compression axis orientation may be due to the alternating activations of the grabens in the submeridionalBotnicGulf and the latitudinalGulf of Finland. Reconstructions for individual faults show contradictions in the directions of shear displacements: both right- and left-lateral displacements are possible on the same fault segments, and the axes of compression can have either latitudinal or meridional orientations. The focal mechanisms of the Osmussaar andKaliningrad earthquakes (meridional and latitudinal axes of compression, respectively) give evidence of specific current neotectonic stresses in this area. Another zone is distinguished at 52°N from the above-described area. It is mainly sublatitudinal and detected along the southern flank of the Byelorussian anteclise. Further to the east, its orientation changes to SSW, and it roughly follows the SW boundary of theVoronezh anteclise. Reconstructions for the Ukrainian Shield, located south of this zone, show mainly the unstable orientations of the axes of compression. For the platforms inNorthern Eurasia, the tectonophysical methods reconstructed neotectonic stresses in the structures formed under the influence of intraplatform tectonic stresses. These are the residual gravitational horizontal compression stresses released by long-term denudation and uplifting of the structures, including the Khibiny massif of the Baltic Shield, theOlenek and Munsky massifs of the East Siberian platform. These structures are composed of the ancient Archaean-Proterozoic rock complexes, which have been subjected to predominantly vertical displacements for a long time, from the Paleozoic to the modern stage. Special attention should be given to the tectonic stresses ofSakhalin located at the boundary between the Eurasian and North American lithospheric plates. At the edges of these two largest plates, there are the Amur and Okhotsk microplates separated by theCentral Sakhalin fault, as described in some publications. Neotectonic stress reconstructions forSakhalinIsland show sublatitudinal compression and submeridional extension in the common stress field of shearing. The tectonophysical studies show that the neotectonic stresses differ in large structures: horizontal compression and shearing are typical of the uplifts (Kola Peninsula, Tien Shan, Sakhalin), while horizontal extension and extension with shearing are characteristic of depressions (Kandalaksha graben, depressions of theTatarGulf and theSea ofOkhotsk). Our studies provide the data on spacious ‘white spots’ in the modern stress maps ofNorthern Eurasia. The stress reconstructions for practically all the studied structures show that shearing is the dominant geodynamic regime in the study region.
About the Authors
L. A. SimRussian Federation
Lidia A. Sim, Doctor of Geology and Mineralogy, Lead Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5
A. V. Marinin
Russian Federation
Anton V. Marinin, Candidate of Geology and Mineralogy, Senior Researcher
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5
G. V. Bryantseva
Russian Federation
Galina V. Bryantseva, Candidate of Geology and Mineralogy, Assistant Professor, Faculty of Geology
1 Leninskie Gory, Moscow 119991
N. A. Gordeev
Russian Federation
Nikita A. Gordeev, Engineer
10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5
References
1. Angelier J., 1975. Sur l’analyse de mesures recueillies dans des sites faillés: l’utilité d’une confrontation entre les méthodes dynamiques et cinématiques // Bulletin de la Société géologique de France 281, 1805–1808.
2. Angelier J., 1979. Determination of the mean principal directions of stresses for a given fault population. Tectonophysics 56 (3–4), T17–T26. https://doi.org/10.1016/0040-1951(79)90081-7.
3. Angelier J., Saintot A., Ilyin A., Rebetsky Y., Vassiliev N., Yakovlev F., Malutin S., 1994. Relations entre champs de contraintes et deformations le long d'une chaine compressive-decrochante: Crimee et Caucase (Russie et Ukraine). Comptes rendus de l'Académie des sciences. Série 2. Sciences de la terre et des planètes 319 (3), 341–348.
4. Bankwitz P., Bankwitz E., 1984. Die Symmetrievon Klueftoberflaechen und ihre Nutzung fuer eine Palaeospannungsanalyse. Zeitschrift fur Geologische Wissenschaften 12, 305–334.
5. Chedia O.K. (Ed.), 1988. Modern Tectonics of the Kirghiz SSR. Map scale 1:500000. 10 sheets. In: Natural Resources of the Kirghiz SSR. Atlas. State Department of Geology and Cartography in the USSR Council of Ministers (in Russian).
6. Chedia O.K., 1986. Morphostructure and Modern Tectogenesis of the Tien Shan. Ilim, Frunze, 314 p. (in Russian).
7. Cheremnykh A.V., 2006. Structure and stress field of faulted crust on the eastern side of Lake Baikal. Geologiya i Geofizika (Russian Geology and Geophysics) 47 (2), 257–264.
8. Delvaux D., Cloetingh S., Beekman F., Sokoutis D., Burov E., Buslov M.M., Abdrakhmatov K.E., 2013. Basin evolution in a folding lithosphere: Altai–Sayan and Tien Shan belts in Central Asia. Tectonophysics 602, 194–222. https://doi.org/10.1016/j.tecto.2013.01.010.
9. Delvaux D., Moeys R., Stapel G., Melnikov A., Ermikov V., 1995. Paleostress reconstructions and geodynamics of the Baikal region, Central Asia. Part I. Palaeozoic and Mesozoic pre-rift evolution. Tectonophysics 252 (1–4), 61–101. https://doi.org/10.1016/0040-1951(95)00090-9.
10. Delvaux D., Moyes R., Stapel G., Petit C., Levi K., Miroshnitchenko А., Ruzhich V., San'kov V., 1997. Paleostress reconstruction and geodynamics of the Baikal region, Central Asia. Part II. Cenozoic rifting. Tectonophysics 282 (1–4), 1–38. https://doi.org/10.1016/S0040-1951(97)00210-2.
11. Eremeev A.N. (Ed.), 1983. Crustal Permeability Schematic Map of the European Part of the USSR Based on Helium Data. Scale 1:2500000. Moscow (in Russian).
12. Gintov O.B., Isai V.М., 1984a. Some regularities of faulting and the method of morpho-kinematic analysis of fractures. Part 1. Geophysical Journal (3), 3–10 (in Russian).
13. Gintov O.B., Isai V.М., 1984b. Some regularities of faulting and the method of morpho-kinematic analysis of fractures. Part 2. Geophysical Journal (4), 3–14 (in Russian).
14. Gintov O.B., Korchemagin V.A., Sim L.A., 2002. Ukrainian Carpathians and Mountainous Crimea – similarity and difference in the kinematic characteristics of tectonic movements (tectonophysical analysis). Geophysical Journal 24 (6), 75–92 (in Russian).
15. Gladkov A.S., Bornyakov S.A., Manakov A.V., Matrosov V.A., 2008. Tectonophysical Studies in Diamond Prospecting. Nauchny Mir, Moscow, 175 p. (in Russian).
16. Gogonenkov G.N., Kashik A.S., Timursiyev A.I., 2007. Horizontal displacements of West Siberia's basement. Geologiya Nefti i Gaza (Oil and Gas Geology) (3), 3–11 (in Russian).
17. Golozubov V.V., Kasatkin S.A., Grannik V.M., Nechayuk A.E., 2012. Deformation of the Upper Cretaceous and Cenozoic complexes of the West Sakhalin terrane. Geotectonics 46 (5), 333–351. https://doi.org/10.1134/S0016852112050020.
18. Gonchar V.V., 2017. East Mountain Crimea strain fields of different age. Geophysical Journal 39 (1), 61–78 (in Russian). https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94011.
19. Goncharov M.A., Raznitsin Yu.N., Barkin Yu.V., 2012. Specific features of deformation of the continental and oceanic lithosphere as a result of the Earth core northern drift. Geodynamics & Tectonophysics 3 (1), 27–54 (in Russian).[. https://doi.org/10.5800/GT-2012-3-1-0060.
20. Gordeev N.A., 2016. Tectonophysical analysis of the lineaments of the Olenek uplift. In: Tectonophysics and top problems of Earth sciences. Proceedings of the All-Russia conference. V. 1. IPE RAS, Moscow, p. 48–52 (in Russian).
21. Gordienko V.V. (Ed.), 1987. Heat Flow Map of Europe. Scale 1:6000000. Naukova Dumka, Kiev (in Russian).
22. Grachev A.F., 1996. Main problems of neotectonics and geodynamics of Northern Eurasia. Izvestiya, Physics of the Solid Earth 32 (12), 925–954.
23. Gusev G.S., 1979. Fold Structures and Faults of the Verkhoyansk-Kolyma System of Mesozoids. Nauka, Moscow, 208 p. (in Russian).
24. Gushchenko O.I., 1973. Analysis of orientations of tectonic fracture displacements and their tectonophysical interpretation in paleostress reconstruction. Doklady AN SSSR 210 (2), 331–334 (in Russian).
25. Gushchenko O.I., 1979. The method of kinematic analysis of destruction structures in reconstruction of tectonic stress fields. In: A.S. Grigoriev, D.N. Osokina (Eds.), Fields of stress and strain in the lithosphere. Nauka, Moscow, p. 7–25 (in Russian).
26. Gushchenko O.I., Sim L.A., 1974. Basis for the method for reconstructing the stress state of the Earth's crust from orientations of tectonic shear displacements (according to geological and seismological data). In: Mechanics of the lithosphere. Abstracts of the All–Union scientific–technical meeting. LeningradMoscow, p. 58 (in Russian).
27. Gzovsky M.V., 1954. Tectonic stress fields. Izvestiya AN SSSR, Geophysical Series (5), 390–410 (in Russian).[Гзовский М.В. Тектонические поля напряжений // Известия АН СССР, серия геофизическая. 1954. № 5. С. 390–410.
28. Gzovsky М.V., 1975. Fundamentals of Tectonophysics. Nauka, Moscow, 536 p. (in Russian).
29. Homberg C., Bergerat F., Philippe Y., Lacombe O., Angelier J., 2002. Structural inheritance and Cenozoic stress fields in the Jura fold-and-thrust belt (France). Tectonophysics 357 (1–4), 137–158. https://doi.org/10.1016/S0040-1951(02)00366-9.
30. Kalinin E.V., Kovalko V.V., Mogilevtsev V.A., Panasyan L.L., Sim L.A., Shirokov V.N., 1995. Comprehensive study of the stress state of rock massifs during exploration of mineral deposits. Bulletin of Moscow State University. Series 4: Geology (2), 75–89 (in Russian).
31. Khain V.E., Lomize M.G., 1995. Geotectonics and Fundamentals of Geodynamics. MSU, Moscow, 480 p. (in Russian).
32. Khubaeva O.R., Bryantseva G.V., Sim L.A., 2007. Recent deformations and hydrothermal fields in the northern part of Paramushir Island. Moscow University Geology Bulletin 62 (4), 229–233. https://doi.org/10.3103/S0145875207040035.
33. Kolodeznikov I.I. (Ed.), 2017. Seismotectonics of the northeastern sector of the Russian Arctic. Publishing House of the Siberian Branch of RAS, Novosibirsk, 135 p. (in Russian).
34. Kopp M.L., 2017. Arcuate Extension Structures in Regional and Global Tectonic Settings: Experience of the Kinematic Analysis. GEOS, Moscow, 96 p. (in Russian).
35. Kopp M.L., Verzhbitsky V.E., Kolesnichenko A.A., Tveritinova T.Yu., Vasil’ev N.Yu., Korchemagin V.A., Makarova N.V., Mostryukov A.O., Ioffe A.I., 2014. Cenozoic Stress Field in the East of the Russian Plate, Southern and Middle Urals. Methodical, Theoretical and Applied Aspects. GEOS, Moscow, 88 p. (in Russian).
36. Korchemagin V.A., 1984. Geological Structure and Stress Fields in Relation to the Evolution of Endogenous Regimes in Donetsk Region. PhD Thesis (Doctor of Geology and Mineralogy). IPE, USSR Acad. Sci., Moscow, 24 p. (in Russian).
37. Kostenko N.P., 1999. Geomorphology. MSU Publishing House, Moscow, 383 p. (in Russian).[Костенко Н.П. Геоморфология. М.: Изд-во МГУ, 1999. 383 с.
38. Kostenko N.P., Bryantseva G.V., 2004. To the problem of structural–geomorphological deciphering in conditions of confined spaces. Bulletin of Moscow State University. Series 4: Geology (4), 34–38 (in Russian).
39. Kropotkin P.N., 1977. Stress state of the crust and tectonic faults. In: M.V. Muratov (Ed.), Faults of the Earth's crust. Nauka, Moscow, p. 20–29 (in Russian).
40. Lamarche J., Bergerat F., Lewandowski M., Mansy J.L., Świdrowska J., Wieczorek J., 2002. Variscan to Alpine heterogeneous palaeo-stress field above a major Palaeozoic suture in the Carpathian foreland (southeastern Poland). Tectonophysics 357 (1–4), 55–80. https://doi.org/10.1016/S0040-1951(02)00362-1.
41. Leonov Yu.G., 1995. Stresses in the lithosphere and intraplate tectonics. Geotectonics (6), 3–25 (in Russian).
42. Levi K.G., Sherman S.I. (Eds.), 2005. Topical Issues of Recent Geodynamics of Central Asia. Publishing House of SB RAS, Novosibirsk, 297 p. (in Russian).
43. Lobkovsky L.I., Nikishin A.M., Khain V.E., 2004. Modern Problems of Geotectonics and Geodynamics. Nauchny Mir, Moscow, 610 с. (in Russian).
44. Lunina O.V., Gladkov A.S., 2007. Late Cenozoic fault pattern and stress fields in the Barguzin rift (Baikal region). Russian Geology and Geophysics 48 (7), 598–609. https://doi.org/10.1016/j.rgg.2006.06.001.
45. Lunina O.V., Gladkov A.S., Sherman S.I., 2007. Variations of stress fields in the Tunka rift of the southwestern Baikal region. Geotectonics 41 (3), 231–256. https://doi.org/10.1134/S0016852107030041.
46. Marinin A.V., 2013. The tectonophysical researches of the Semisamskaya anticline (North-Western Caucasus fold and thrust belt). Geodynamics & Tectonophysics 4 (4), 461–484 (in Russian). https://doi.org/10.5800/GT-2013-4-4-0113.
47. Marinin A.V., Sim L.A., 2015. The contemporary state of stress and strain at the western pericline of the Greater Caucasus. Geotectonics 49 (5), 411–424. https://doi.org/10.1134/S0016852115040068.
48. Marinin A.V., Sim L.A., Sycheva N.A., Sychev V.N., 2016. Stress-strain state of the Kirghiz ridge from the data on geological stress indicators. In: Tectonophysics and top problems of Earth sciences. Proceedings of the All-Russia conference. V. 1. IPE RAS, Moscow, p. 152–161 (in Russian).
49. Marinin A.V., Tveritinova T.Y., 2016. The structure of the Tuapse shear zone according to the field tectonophysical data. Moscow University Geology Bulletin 71 (2), 151–166. https://doi.org/10.3103/S0145875216020058.
50. Markov G.A., 1977. Tectonic Stresses and Rock Pressure in Mines of the Khibiny Massif. Nauka, Leningrad, 213 p. (in Russian).
51. Markov G.A., 1980. On the distribution of horizontal tectonic stresses in zones of the crust uplifts. Engineering Geology (1), 20–30 (in Russian).
52. Milanovsky E.E. (Ed.), 2007. Tectonic Map of Russia, Adjacent Territories and Sea Areas. Scale 1:4000000. MSU, Moscow, 10 sheets (in Russian).
53. Milanovsky E.E., Rastsvetaev L.M., Kukhmazov S.U., Birman A.S., Kurdin N.N., Simako V.G., 1989. Modern geodynamics of the Elbrus-Minvody zone of the North Caucasus. In: A.A. Belov, M.A. Satian (Eds.), Geodynamics of the Caucasus. Nedra, Moscow, p. 99–105 (in Russian).
54. Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of continental collision. Science 189 (4201), 419–426. https://doi.org/10.1126/science.189.4201.419.
55. Murovskaya A.V., 2012. Stress-strain state of the Western Mountainous Crimea in the Oligocene-Holocene according to tectonophysical data. Geophysical Journal 34 (2), 109–119 (in Russian).
56. Nikolaev P.N., 1977. Method of statistical analysis of fractures and reconstruction of tectonic stresses. Izvestiya Vuzov. Geology and Exploration (12), 103–115 (in Russian).
57. Nikolaev P.N., 1992. Method of Tectonodynamic Analysis. Nedra, Moscow, 295 p. (in Russian).[Николаев П.Н. Методика тектонодинамического анализа. М.: Недра, 1992. 295 с.
58. Osokina D.N., 1987. On the hierarchical properties of the tectonic field of stresses and deformations in the Earth's crust. In: A.S. Grigoriev, D.N. Osokina (Eds.), Fields of stresses and deformations in the Earth's crust. Nauka, Moscow, p. 136–151 (in Russian).
59. Ostaficzuk S., 1995. Impact of Poland’s geological structure on neogeodynamics. Technika Poszukiwań Geologicznych. Geosynoptyka i Geotermia 34 (3), 79–107.
60. Pavlenkova N.I. (Ed.), 2006. Structure and Dynamics of the Lithosphere of Eastern Europe. Research Results of the EUROPROBE Programme. Issue 2. GEOKART, GEOS, Moscow, 735 p. (in Russian).
61. Petrov V.A., Sim L.A., Nasimov R.M., Shchukin S.I., 2010. Fault tectonics, neotectonic stresses, and hidden uranium mineralization in the area adjacent to the Strel’tsovka Caldera. Geology of Ore Deposits 52 (4), 279–288. https://doi.org/10.1134/S1075701510040033.
62. Ponomarev V.S., 1971. Elastic energy of rocks and seismicity. In: M.A. Sadovsky (Ed.), Experimental seismology. Nauka, Moscow, p. 75–86 (in Russian).
63. Расцветаев Л.М. Горный Крым и Северное Причерноморье // Разломы и горизонтальные движения горных сооружений / Ред. А.И. Суворов. М.: Наука, 1977. С. 95–113.
64. Rastsvetaev L.M., 1982. Structural drawings of fractures and their geomechanical interpretation. Doklady AN SSSR 267 (4), 904–909 (in Russian).[Расцветаев Л.М. Структурные рисунки трещиноватости и их геомеханическая интерпретация // Доклады АН СССР. 1982. Т. 267. № 4. С. 904–909.
65. Rebetsky Y.L., 2007. Tectonic Stresses and Strength of Rock Massifs. Akademkniga, Moscow, 406 p. (in Russian).[Ребецкий Ю.Л. Тектонические напряжения и прочность горных массивов. М.: Академкнига, 2007. 406 с.
66. Rebetsky Y.L., 2008. Possible mechanism of horizontal compression stress generation in the Earth’s crust. Doklady Earth Sciences 423 (2), 1448–1451. https://doi.org/10.1134/S1028334X08090274.
67. Rebetsky Y.L., 2015. On the specific state of crustal stresses in intracontinental orogens. Geodynamics & Tectonophysics 6 (4), 437–466 (in Russian). https://doi.org/10.5800/GT-2015-6-4-0189.
68. Rebetsky Y.L., Sim L.A., Kozyrev A.A., 2017a. Possible mechanism of horizontal overpressure generation of the Khibiny, Lovozero, and Kovdor ore clusters on the Kola Peninsula. Geology of Ore Deposits 59 (4), 265–280. https://doi.org/10.1134/S1075701517040043.
69. Rebetsky Y.L., Sim L.A., Marinin A.V., 2017b. From Slickensides to Tectonic Stress. Methods and Algorithms. GEOS, Moscow, 225 p. (in Russian).
70. Saintot A., Angelier J., 2002. Tectonic paleostress fields and structural evolution of the NW-Caucasus fold-and-thrust belt from Late Cretaceous to Quaternary. Tectonophysics 357 (1–4), 1–31. https://doi.org/10.1016/S0040-1951(02)00360-8.
71. San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics 45 (5), 378–393. https://doi.org/10.1134/S0016852111050049.
72. Seminsky K.Zh., Seminsky Zh.V., 2016. Special Mapping of the Crustal Fault Zones, and Its Possibilities in Studying the Structural Control of Kimberlites in the Alakit-Markha Field, Yakutian Diamond Province. Publishing house of the Irkutsk State Technical University, Irkutsk, 204 p. (in Russian).
73. Sharov N.V., Malovichko A.A., Shchukin Yu.K. (Eds.), 2007. Earthquakes and Microseismicity in Problems of Modern Geodynamics of the East European Platform. Book 1. Earthquakes. Karelian Research Center RAS, Petrozavodsk, 381 p. (in Russian).
74. Sherman S.I., Dneprovsky Yu.I., 1989. Fields of Crustal Stresses and Geological and Geophysical Methods of Their Studies. Nauka, Novosibirsk, 158 p. (in Russian).
75. Sidorenko A.V. (Ed.), 1980. Map of faults in the territory of the USSR and neighboring countries. Scale 1:2500000. Ministry of Geology of the USSR, Moscow (in Russian).
76. Sim L.A., 1982. Determination of the regional field from data on local stresses in individual areas. Izvestia Vuzov. Geologiya i Razvedka (Geology and Exploration) (4), 35–40 (in Russian).
77. Sim L.A., 1991. The study of tectonic stresses from geological indicators (methods, results, and recommendations). Izvestia Vuzov. Geologiya i Razvedka (Geology and Exploration) (10), 3–22 (in Russian).
78. Sim L.A., 1999. Neotectonic stress field of platform structures in the Baltic region. Technika Poszukiwań Geologicznych. Geosynoptyka i Geotermia 38 (1), 96–101.
79. Sim L.A., 2000. The impact of global tectogenesis on the most recent state of stresses of platforms in Europe. In: Yu.G. Leonov, V.N. Strakhov (Eds.), M.V. Gzovsky and development of tectonophysics. Nauka, Moscow, p. 326–350 (in Russian).
80. Sim L.A., 2012. On the relation between the sedimentation volume in the frame basins and the value of erosional drift from the Fennoscandian shield in the Meso-Cenozoic. In: Sedimentary basins and geological prerequisites for prediction of new promising petroleum objects. GEOS, Moscow, p. 392–401 (in Russian).
81. Sim L.A., Bogomolov L.M., Bryantseva G.V., Savvichev P.A., 2017. Neotectonics and tectonic stresses of the Sakhalin Island. Geodynamics & Tectonophysics 8 (1), 181–202 (in Russian). https://doi.org/10.5800/GT-2017-8-1-0237.
82. Sim L.A., Bryantseva G., Karabanov A.K., Levkov E., Aizberg R., 1995. The neotectonic stress of Belorus and the Baltic countries. Technika Poszukiwań Geologicznych. Geosynoptyka i Geotermia 34 (3), 53–57.
83. Sim L.A., Bryantseva G.V., Chekmarev K.V., 2008. On transformation of the structural plan of the northern part of the West-Siberian plate and the Polar Urals in the latest stage. In: Problems of tectonophysics. The 40th anniversary of foundation of Laboratory of Tectonophysics, IPE RAS, by M.V. Gzovsky. IPE RAS, Moscow, p. 301–318 (in Russian).
84. Sim L.A., Korcemagin V., Frischbutter A., Bankwitz P., 1999. The neotectonic stress field pattern of the East European platform. Zeitschrift fur Geologische Wissenschaften 27 (3/4), 161–182.
85. Sim L.A., Marinin A.V., Gareev K.R., Mandelberg A.V., 2016. Modern fault tectonics and the stress-strain state of the Viluisk syneclise. Prediction of sites with increased permeability. In: Tectonophysics and top problems of Earth sciences. Proceedings of the All-Russia conference. V. 1. IPE RAS, Moscow, p. 264–269 (in Russian).
86. Sim L.A., Sergeev A.A., 1996. Eine strukturell-geomorphologische Methode zur Analyse aktiver Bruche mit dem Ziel der bestimmung neotectonischer Spannungen in Tafelgebieten. Zeitschrift fur Geologische Wissenschaften 24, 369–376.
87. Sim L.A., Sycheva N.A., Sychev V.N., Marinin A.V., 2014. The pattern of the paleo-and present-day stresses of Northern Tien Shan. Izvestiya, Physics of the Solid Earth 50 (3), 378–392. https://doi.org/10.1134/S1069351314030100.
88. Sim L.A., Zhirov D.V., Marinin A.V., 2011. Stress and strain reconstruction for the eastern segment of the Baltic shield. Geodynamics & Tectonophysics 2 (3), 219–243 (in Russian). https://doi.org/10.5800/GT-2011-2-3-0044.
89. Umurzakov R.A., 2009. Stress fields and the formation mechanism of earthquake foci in mountain regions of the Tien Shan from geostructural data. In: Tectonophysics and top problems of Earth sciences. Proceedings of the All-Russia conference. IPE RAS, Moscow, p. 408–414 (in Russian).
90. Volokh N.P., Sashurin A.D., Lipin Ya.I., 1972. Investigations of residual stresses in strong rocks. In: N.V. Melnikov (Ed.), Modern problems of rock mechanics. Nauka, Leningrad, p. 186–189 (in Russian).[.
91. Vvedenskaya А.V., 1969. Studies of Stresses and Fractures in Earthquake Foci by the Theory of Dislocations. Nauka, Moscow, 136 p. (in Russian).
92. Yurchenko O.S., Sim L.A., 2008. Shear tectonics of Maksimkinskaya and Avrigolskaya areas of the Alexandrovsky dome. In: Tectonophysics and top problems of Earth sciences. Proceedings of the All-Russia conference. Proceedings of the All-Russia conference. V. 1. IPE RAS, Moscow, p. 199–201 (in Russian).
93. Zoback M.L., 1992. First‐and second‐order patterns of stress in the lithosphere: The World Stress Map Project. Journal of Geophysical Research: Solid Earth 97 (B8), 11703–11728. https://doi.org/10.1029/92JB00132.
94. Zyatkova L.K., 1979. Structural Geomorphology of Western Siberia. Nauka, Novosibirsk, 200 p. (in Russian).
Review
For citations:
Sim L.A., Marinin A.V., Bryantseva G.V., Gordeev N.A. Results of the tectonic stress study of the Northern Eurasia regions. Geodynamics & Tectonophysics. 2018;9(3):771-800. (In Russ.) https://doi.org/10.5800/GT-2018-9-3-0371