Preview

Geodynamics & Tectonophysics

Advanced search

THE DIGITAL MAP OF THE PLIOCENE–QUATERNARY CRUSTAL FAULTS IN THE SOUTHERN EAST SIBERIA AND THE ADJACENT NORTHERN MONGOLIA

https://doi.org/10.5800/GT-2016-7-3-0215

Abstract

Introduction. Studying and mapping of faults in the Earth’s crust is one of the priority objectives in struc‐ tural geology and tectonophysics. Generally, faults are associated with mineral deposits, thermal springs and earth‐ quakes, and fault zones are areas of the most dangerous geological processes and various geophysical anomalies. In this regard, digital maps and databases on faults and fault zones are highly demanded both for science and practical applications. This paper presents a new digital map of the southern East Siberia and the adjacent Northern Mongolia, which shows faults in the crust which were active in the Pliocene‐Quaternary. The map covers the territory between 96–124°E to 49–58°N. An annex to this paper contains files with geospatial data on the mapped faults.

The input data, and their synthesis. We consolidated the database on faults active in the Pliocene‐Quaternary stage of the crust development and mapped the faults on the basis of digital elevation models SRTM 90 m [Consortium for Spatial Information, 2004], space images from Landsat series satellites (Google Earth), electronic bathymetry data on Lake Baikal [Sherstyankin et al., 2006], topographic maps (1:200000 scale), regional and global earthquake cata‐ logs, as well as the publications and maps based on the earlier studies of active tectonics and earthquake traces with the use of the ActiveTectonics Information System developed by the research team lead by the author of this paper [Lunina et al., 2014b]. For the major part of the southern East Siberia, we collected and processed our field observa‐ tion data on faults and related deformation features (Fig. 1). The geographic locations of the faults were mapped with the use of MapInfo GIS. The precise detection of tectonic faults, topographically represented by river lineaments and benching, was ensured by the synthesis of cartographic, literature and field materials. A significant number of the detected lineaments, that were not confirmed by any data due to the poor knowledge of some regions in the southern East Siberia and the adjacent territories, are included in the database with a special mark and shown on the map as inferred faults.

Results and discussion. The digital map (Fig. 2) shows 1678 faults composed of 2315 segments, including 1097 true, and 1218 inferred ones, identified by the fault strike changes or fragmentation. Using the consolidated fault da‐ tabase, we constructed maps showing fault segments differing in the degree of activity (Fig. 3), displacement types (Fig. 4 and 7), and ages of the last activations (Fig. 8). Besides, we constructed a map of seismically active faults that can generate M≥5.5 earthquakes. The analysis of the thematic maps of faults gives grounds to conclusions that have been either partly supported or controversial, yet now are based on the factual justification of the faults in the Ac‐ tiveTectonics Information System database. It is shown that the Baikal rift zone is bordered in the southwest by the Busiyngol basin and the West Belino‐Busiyngol fault, and in the northeast by the Olyokma and Nyukzha faults located in the basins of the same‐name rivers. In the areas located westward and eastward of these boundaries, the rift re‐ gime (crustal stretching, extension with strike‐slip faulting, and shearing) is abruptly changed to transpression. In general, similar activation features are typical of the southern East Siberia in the Holocene and the present time. Such features include seismogenic activation episodes when mainly the faults of the NE–SW and sublatitudinal strike are renovated – normal faults, left‐lateral normal faults with a strike‐slip component, left‐lateral strike‐slip faults, left‐ lateral strike‐slip faults with a normal component, and left‐lateral strike‐slip faults with a reverse component. The NE‐ striking faults are insignificant to the west of 98° meridian.

Conclusion. The digital fault map (Fig. 2) and the thematic maps (Fig. 3, 4, 7, 8 and 9) can be used as a tectonic ba‐ sis for the synthesis of geological, geophysical, hydrogeological and geodetic data in studies aimed at forecasting of hazardous endogenic and exogenic geological processes. The undoubted advantage of this digital fault map over other regional fault maps is its integrated mapping framework that consolidates a large amount of data (collected mostly by the Siberian scientists) in the uniform information space. Newly gathered data can be input in the map’s database that is available for off‐line viewing on html‐pages.

About the Author

O. V. Lunina
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Lead Researcher,

128 Lermontov street, Irkutsk 664033



References

1. A.I.S.T. (Japanese National Institute of Advanced Industrial Science and Technology). Active Fault Database of Japan, August 11, 2015 version, 2007. Available from: https://gbank.gsj.jp/activefault/index_e_gmap.html (last accessed 18.03.2016).

2. Arzhannikova A.V., Arzhannikov S.G., 2014. Seismotectonics of the Altai-Sayan mountain region. In: Earthquakes in Tuva of 2011–2012. TuvIKOPR SB RAS, Kyzyl, p. 4–9 (in Russian) [Аржанникова А.В., Аржанников С.Г. Сейсмотектоника Алтае-Саянской горной области // Тувинские землетрясения 2011–2012 гг. Кызыл: ТувИКОПР СО РАН, 2014. С. 4–9].

3. Basili R., Valensise G., Vannoli P., Burrato P., Fracassi U., Mariano S., Tiberti M.M., Boschi E., 2008. The database of individual seismogenic sourse (DISS), Version 3: Summarizing 20 years of research on Italy's earthquake geology. Tectonophysics 453 (1–4), 20–43. http://dx.doi.org/10.1016/j.tecto.2007.04.014.

4. Belichenko V.G., Reznitsky L.Z., Geletii N.K., Barash I.G., 2003. Tuva-Mongolia terrane (in the context of microcontinents in the Paleoasian ocean). Geologiya i Geofizika (Russian Geology and Geophysics) 44 (6), 554–565.

5. Bulgatov A.N., Bulnaev K.B., Ochirov Ts.O., Turunkhaev V.I., 1978. Tectonic Faults in Transbaikalia. Nauka, Novosibirsk, 110 p. (in Russian) [Булгатов А.Н., Булнаев К.Б., Очиров Ц.О., Турунхаев В.И. Тектонические разломы Забайкалья. Новосибирск: Наука, 1978. 110 с.].

6. Bulnaev K.B., Dorzhiev V.S., Ochirov Ts.O., Turunkhaev V.I., 1975. Mesozoic tectonics of Transbaikalia. Nauka, Novosibirsk, 206 p. (in Russian) [Булнаев К.Б., Доржиев В.С., Очиров Ц.О., Турунхаев В.И. Мезозойская тектоника Забайкалья. Новосибирск: Наука, 1975. 206 с.].

7. Caputo R., Chatzipetros A., Pavlides S., Sboras S., 2012. The Greek database of seismogenic sources (GreDaSS): state-ofthe-art for northern Greece. Annals of Geophysics 55 (5), 859–894. http://dx.doi.org/10.4401/ag-5168.

8. Caputo R., Pavlides S. and GreDaSS Working Group, 2013. The Greek database of seismogenic sources (GreDaSS). A compilation of potential sources for earthquake larger than 5.5 in Greece and surrounding areas. Available from: http://gredass.unife.it (last accessed 18.03.2016).

9. Chipizubov A.V., 2007. Optimal Assessment of Seismic Hazard in Pribaikalie. PhD Thesis (Doctor of Sciences – Geology and Mineralogy). Institute of the Earth’s Crust SB RAS, Irkutsk, 417 p. (in Russian) [Чипизубов А.В. Оптимальная оценка сейсмической опасности Прибайкалья: Дис. … докт. геол.-мин. наук. Иркутск: ИЗК СО РАН, 2007. 417 с.].

10. Chipizubov A.V., Smekalin O.P., 1999. Fault scarps and the causative prehistoric earthquakes in the Main Sayan Fault zone. Geologiya i Geofizika (Russian Geology and Geophysics) 40 (6), 921–931.

11. Consortium for Spatial Information, 2004. Available from: http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp (last accessed 18.03.2016).

12. Corti G. E., Calignano, Petit C., Sani F., 2011. Control of lithospheric structure and plate kinematics on rift architecture and evolution: an experimental modeling of the Baikal rift. Tectonics 30 (3), TC3011. http://dx.doi.org/10.1029/2011TC002871.

13. Geophysical Survey of Russian Academy of Sciences, 2016. Available from: http://www.ceme.gsras.ru/cgi-bin/ceme/equakes.pl?l=1 (last accessed 19.03.2016).

14. Gladkov A.A., Lunina O.V., Andreyev A.V., 2013. Some aspects of development information system for integration data on active tectonics. Geoinformatika (4), 6–14 (in Russian) [Гладков А.А., Лунина О.В., Андреев А.В. Некоторые аспекты разработки информационной системы для интегрирования данных по активной тектонике // Геоинформатика. 2013. № 4. С. 6–14].

15. Global CMT Catalog. Available from: http://www.globalcmt.org/ (last accessed 19.03.2016).

16. GNS Science Ltd. (Institute of Geological and Nuclear Sciences Limited). New Zealand Active Faults Database, 2004. Available from: http://maps.gns.cri.nz/website/af/ (last accessed 18.03.2016).

17. Imaev V.S., Imaeva L.P., Smekalin O.P., Koz’min B.M., Grib N.N., Chipizubov A.V., 2015. A seismotectonic map of Eastern Siberia. Geodynamics & Tectonophysics 6 (3), 275–287 (in Russian) [Имаев В.С., Имаева Л.П., Смекалин О.П., Козьмин Б.М., Гриб Н.Н., Чипизубов А.В. Карта сейсмотектоники Восточной Сибири // Геодинамика и тектонофизика. 2015. Т. 6. № 3. С. 275–287] http://dx.doi.org/10.5800/GT-2015-6-3-0182.

18. Ioffe A.I., Kozhurin A.I., 1996. Database of active faults of Eurasia. Journal of Earthquake Prediction Research 5, 431–435.

19. Jolivet M., Arzhannikov S., Arzhannikova A., Chauvet A., Vassallo R., Braucher R., 2013. Geomorphic Mesozoic and Cenozoic evolution in the Oka-Jombolok region (East Sayan ranges, Siberia). Journal of Asian Earth Sciences 62, 117–133. http://dx.doi.org/10.1016/j.jseaes.2011.09.017.

20. Karasyov P.S., 2009. Seismotectonics of the Transition Region from the Baikal Rift Zone to the Stanovoi Ridge Uplift. Synopsis of PhD Thesis (Candidate of Sciences – Geology and Mineralogy). Lomonosov Moscow State University, Moscow, 22 p. (in Russian) [Карасёв П.С. Сейсмотектоника области перехода Байкальской рифтовой зоны к поднятию Станового хребта: Автореф. дис. … канд. геол.-мин. наук. М.: МГУ им. М.В. Ломоносова, 2009. 22 с.].

21. Khilko S.D., Kurushin R.A., Kochetkov V.M., Misharina L.A., Melnikova V.I., Gileva N.A., Lastochkin S.V., Baljinnyam I., Monkhoo D., 1985. Earthquakes and foundations of seismic zoning in Mongolia. Nauka, Moscow, 224 p. (in Russian) [Хилько С.Д., Курушин Р.А., Кочетков В.М., Мишарина Л.А., Мельникова В.И., Гилева Н.А., Ласточкин С.В., Балжинням И., Монхоо Д. Землетрясения и основы сейсмического районирования Монголии. М.: Наука, 1985. 224 с.].

22. Khrenov P.M. (Ed.), 1982. Map of Faults of Southern East Siberia. Scale 1:1500000. VSEGEI, Leningrad (in Russian) [Карта разломов юга Восточной Сибири. Масштаб 1:1500000 / Ред. П.М. Хренов. Л.: ВСЕГЕИ, 1982].

23. Koff G.L., Lobatskaya R.M., 1991. The Study of Faults During Geological Engineering Geological Surveys in Seismically Active Regions (Case of Armenia). Warsaw, 224 p. (in Russian) [Кофф Г.Л., Лобацкая Р.М. Изучение разломов при инженерно-геологических исследованиях в сейсмоактивных областях (на примере Армении). Варшава, 1991. 224 с.].

24. Koronovsky N.V., Bryantseva G.V., Goncharov M.A., Naimark A.A., Kopaev A.V., 2014. Lineaments, planetary jointing, and the regmatic system: main points of the phenomena and terminology. Geotectonics 48 (2), 151–163. http://dx.doi.org/10.1134/S0016852114020058.

25. Kulakov I.Yu, 2008. Upper mantle structure beneath Southern Siberia and Mongolia, from regional seismic tomography. Russian Geology and Geophysics 49 (3), 187–196. http://dx.doi.org/10.1016/j.rgg.2007.06.016.

26. Lebedev S., Meier T., van der Hilst R.D., 2006. Asthenospheric flow and origin of volcanism in the Baikal Rift area. Earth and Planetary Science Letters 249 (3–4), 415–424. http://dx.doi.org/10.1016/j.epsl.2006.07.007.

27. Levi K.G., Babusbkin S.M., Badardinov A.A., Buddo V.Yu., Larkin G.V., Miroshnichenko A.I., San'kov V.A., Ruzhich V.V., Wong H.K., Delvaux D., Colman S., 1995. Active Baikal tectonics. Geologiya i Geofizika (Russian Geology and Geophysics) 36 (10), 154–163 (in Russian) [Леви К.Г., Бабушкин С.М., Бадардинов А.А., Буддо В.Ю., Ларкин Г.В., Мирошниченко А.И., Саньков В.А., Ружич В.В., Вонг X.К., Дельво Д., Колман С. Активная тектоника Байкала // Геология и геофизика. 1995. Т. 36. № 10. С. 154–163].

28. Levi K.G., Khromovskikh V.S., Kochetkov V.M., Nikolaev V.V., Semenov R.M., Serebrennikov S.P., Chipizubov A.V., Dem’yanovich M.G., Arzhannikov S.G., Del’yansky E.A., Smekalin O.P., Ruzhich V.V., Buddo V.Yu., Masal’sky O.K., Potapov V.A., Berzhinsky Yu.A., Radziminovich Ya.B., 1996. Modern geodynamics: seismotectonics, earthquake prediction, seismic risk (fundamental and applied aspects). Part 2. In: N.A. Logachev (Ed.), Lithosphere of Central Asia. Nauka Press, Novosibirsk, p. 150–182 (in Russian) [Леви К.Г., Хромовских В.С., Кочетков В.М., Николаев В.В., Семенов Р.М., Серебренников С.П., Чипизубов А.В., Демьянович М.Г., Аржанников С.Г., Дельянский Е.А., Смекалин О.П., Ружич В.В., Буддо В.Ю., Масальский О.К., Потапов В.А., Бержинский Ю.А., Радзиминович Я.Б. Современная геодинамика: сейсмотектоника, прогноз землетрясений, сейсмический риск (фундаментальные и прикладные аспекты). Статья II // Литосфера Центральной Азии / Ред. Н.А. Логачев. Новосибирск: Наука. Сибирская издательская фирма РАН, 1996. С. 150–182.

29. Levi K.G., Miroshnichenko A.I., San'kov V.A., Babushkin S.M., Larkin G.V., Badardinov A.A., Wong H.K., Colman S., Delvaux D., 1997. Active faults of the Baikal Basin. Bulletin du Centre de Recherches Elf Exploration Production 21 (2), 399–434.

30. Levi K.G., Yazev S.A., Zadonina N.V., Berdnikova N.E., Voronin V.I., Glyzin A.V., Kusner Yu.S., 2002. Recent Geodynamics and Heliogeodynamcs. Publishing House of the Irkutsk State Technical University, Irkutsk, 182 p. (in Russian) [Леви К.Г., Язев С.А., Задонина Н.В., Бердникова Н.Е., Воронин В.И., Глызин А.В., Куснер Ю.С. Современная геодинамика и гелиогеодинамика. Иркутск: Изд-во ИрГТУ, 2002. 182 с.].

31. Logachev N.A. (Ed.), 1984. Geology and Seismicity of the BAM Zone. Neotectonics. Nauka, Novosibirsk, 208 p. (in Russian) [Геология и сейсмичность зоны БАМ. Неотектоника / Ред. Н.А. Логачев. Новосибирск: Наука, 1984. 208 с.].

32. Logachev N.A., 2003. History and geodynamics of the Baikal rift. Geologiya i Geofizika (Russian Geology and Geophysics) 44 (5), 391–406.

33. Logachev N.A., Bornyakov S.A., Sherman S.I., 2000. Mechanism of the Baikal Rift Zone Formation based on results of physical modeling. Doklady Earth Science 373A (6), 980–982.

34. Logatchev N.A., Florensov N.A., 1978. The Baikal system of rift valleys. Tectonophysics 45 (1), 273–286. http://dx.doi.org/10.1016/0040-1951(78)90218-4.

35. Lunina O.V., 2002. The influence of the state of lithospheric stresses on the relationship between the parameters and the internal structure of seismically active faults. PhD Thesis (Candidate of Sciences – Geology and Mineralogy). Institute of the Earth’s Crust SB RAS, Irkutsk, 223 p. (in Russian) [Лунина О.В. Влияние напряженного состояния литосферы на соотношение параметров и внутреннюю структуру сейсмоактивных разломов: Дис. … канд. геол.-мин. наук. Иркутск: ИЗК СО РАН, 2002. 223 с.].

36. Lunina O.V., 2010. Activity rating of Pliocene–Quaternary faults: a formalized approach (example of the Baikal Rift System). Russian Geology and Geophysics 51 (4), 329–339. http://dx.doi.org/10.1016/j.rgg.2010.03.008.

37. Lunina O.V., 2015. Faults Activated in the Pliocene-Quaternary in the Southern East Siberia, and Their Role in the Development of Seismically Induced Geologic Processes. PhD Thesis (Doctor of Sciences – Geology and Mineralogy). Lomonosov Moscow State University, Moscow, 359 p. (in Russian) [Лунина О.В. Разломы плиоцен-четвертичной активизации юга Восточной Сибири и их роль в развитии сейсмически индуцированных геологических процессов: Дис. … докт. геол.-мин. наук. М.: МГУ им. М.В. Ломоносова, 2015. 359 с.].

38. Lunina O.V., Andreev A.V., Gladkov A.A., 2014a. Geological hazards associated with seismogenic faulting in southern Siberia and Mongolia: forms and location patterns. Russian Geology and Geophysics 55 (8), 1017–1031. http://dx.doi.org/10.1016/j.rgg.2014.07.010.

39. Lunina O.V., Andreev A.V., Gladkov A.S., 2012a. The Tsagan earthquake of 1862 on Lake Baikal revisited: a study of secondary coseismic soft-sediment deformation. Russian Geology and Geophysics 53 (6), 571–587. http://dx.doi.org/10.1016/j.rgg.2012.04.007.

40. Lunina O.V., Andreev A.V., Gladkov A.S., 2015. The 1950 Mw = 6.9 Mondy earthquake in southern East Siberia and associated deformations: facts and uncertainties. Journal of Seismology 19 (1), 171–189. http://dx.doi.org/10.1007/s10950-014-9457-9.

41. Lunina O.V., Caputo R., Gladkov A.A., Gladkov A.S., 2014b. Southern East Siberia Pliocene-Quaternary faults: database, analysis and inference Geoscience Frontiers 5 (4), 605–619. http://dx.doi.org/10.1016/j.gsf.2013.12.006.

42. Lunina O.V., Gladkov A.S., 2002. Detailed mapping and comparative analysis of the internal structure of fault zones (case of the Baikal region). Izvestia VUZov, Geologiya i Razvedka (Proceedings of Universities, Geology and Exploration) (4), 30–39 (in Russian) [Лунина О.В., Гладков А.С. Детальное картирование и сравнительный анализ внутреннего строения зон разломов (на примере Прибайкалья) // Известия ВУЗов. Геология и разведка. 2002. № 4. С. 30–39].

43. Lunina O.V., Gladkov A.S., Gladkov A.A., 2012b. Systematization of active faults for the assessment of the seismic Hazard. Russian Journal of Pacific Geology 6 (1), 42–51. http://dx.doi.org/10.1134/S1819714012010101.

44. Lunina O.V., Gladkov A.S., Nevedrova N.N., 2009. Rift Basins in Pribaikal’e: Tectonic Structure and Development History. Academic Publishing House “Geo”, Novosibirsk, 316 p. (in Russian) [Лунина О.В., Гладков А.С., Неведрова Н.Н. Рифтовые впадины Прибайкалья: тектоническое строение и история развития. Новосибирск: Академическое изд-во «Гео», 2009. 316 с.].

45. Melnikova V.I., Radziminovich N.A., 1998. Mechanisms of action of earthquake foci in the Baikal region over the period 1991–1996. Geologiya i Geofizika (Russian Geology and Geophysics) 39 (11), 1598–1607.

46. Melnikova V.I., Radziminovich N.A., 2003. Pribaikalie and Transbaikalia. Catalog of Earthquake Mechanisms (CD-ROM). In: Earthquakes of Northern Eurasia in 1997. GS RAS, Obninsk, p. 218 (in Russian) [Мельникова В.И., Радзиминович Н.А. Прибайкалье и Забайкалье. Каталог механизмов землетрясений (CD–ROM) // Землетрясения Северной Евразии в 1997 г. Обнинск: ГС РАН, 2003. С. 218].

47. Melnikova V.I., Radziminovich N.A., 2004a. Focal parameters of earthquakes in the Baikal region in 2003. In: Recent geodynamics and hazardous natural processes in Central Asia. Institute of the Earth’s Crust SB RAS, Irkutsk State Technical University, Irkutsk, p. 197–201 (in Russian) [Мельникова В.И., Радзиминович Н.А. Очаговые параметры землетрясений Байкальского региона в 2003 г. // Современная геодинамика и опасные природные процессы в Центральной Азии. Иркутск: ИЗК СО РАН, ИрГТУ, 2004. С. 197–201].

48. Melnikova V.I., Radziminovich N.A., 2004b. Pribaikalie and Transbaikalia. Catalog of Earthquake Mechanisms (CDROM). In: Earthquakes of Northern Eurasia in 1998. GS RAS, Obninsk, p. 481. (in Russian) [Мельникова В.И., Радзиминович Н.А. Прибайкалье и Забайкалье. Каталог механизмов очагов землетрясений (CD–ROM) // Землетрясения Северной Евразии в 1998 г. Обнинск: ГС РАН, 2004. С. 481].

49. Melnikova V.I., Radziminovich N.A., 2005. Pribaikalie and Transbaikalia. Catalog of Earthquake Mechanisms (CD-ROM). In: Earthquakes of Northern Eurasia in 1999. GS RAS, Obninsk, p. 731–733 (in Russian) [Мельникова В.И., Радзиминович Н.А. Прибайкалье и Забайкалье. Каталог механизмов очагов землетрясений (CD–ROM) // Землетрясения Северной Евразии в 1999 г. Обнинск: ГС РАН, 2005. С. 731–733].

50. Molnar P., Tapponnier P., 1975. Cenozoic tectonics of Asia: effects of a continental collision. Science 189 (4201), 419–426. http://dx.doi.org/10.1126/science.189.4201.419.

51. Nikishin A.M., Morozov A.F., Ershov A.V., Korotaev M.V., Bolotov S.N., Mezhelovsky N.V., 2007. Three-dimensional numerical geological mapping: Principles and computer programs for producing new generation maps. Moscow University Geology Bulletin 62 (1), 1–9. http://dx.doi.org/10.3103/S0145875207010012.

52. Parfeevets A.V., San'kov V.A., 2006. Stress State of the Earth's Crust and Geodynamics of the Southwestern Part of the Baikal Rift System. Geo Academic Publishing House, Novosibirsk, 151 p. (in Russian) [Парфеевец А.В., Саньков В.А. Напряженное состояние земной коры и геодинамика юго-западной части Байкальской рифтовой системы. Новосибирск: Академическое изд-во «Гео», 2006. 151 c.].

53. Petit C., Déverchère J., 2006. Structure and evolution of the Baikal rift: a synthesis. Geochemistry Geophysics Geosystem 7 (11), Q11016. http://dx.doi.org/10.1029/2006GC001265.

54. Petit C., Koulakov I., Déverchère J., 1998. Velocity structure around the Baikal rift from teleseismic and local earthquake traveltimes and geodynamic implications. Tectonophysics 296 (1–2), 125–144. http://dx.doi.org/10.1016/S0040-1951(98)00140-1.

55. Radziminovich N.A., Gileva N.A., Melnikova V.I., Ochkovskaya M.G., 2013. Seismicity of the Baikal rift system from regional network observations. Journal of Asian Earth Sciences 62, 146–161. http://dx.doi.org/10.1016/j.jseaes.2012.10.029.

56. Research group for active faults of Japan, 1992. Maps of active faults in Japan with an explanatory text. University of Tokyo Press, Tokyo, 73 p.

57. Ruzhich V.V., 1972. Faults in the Southwestern Flank of the Baikal Rift Zone, and Some aspects of the Dynamics of Their Formation. Synopsis of PhD Thesis (Candidate of Sciences – Geology and Mineralogy). Zhdanov Irkutsk State University, Irkutsk, 23 p. (in Russian) [Ружич В.В. Разломы юго-западного фланга Байкальской рифтовой зоны и некоторые вопросы динамики их формирования: Автореф. дис. … канд. геол.-мин. наук. Иркутск: ИГУ им. А.А. Жданова, 1972. 23 с.].

58. Ruzhich V.V., 1977. Relationship between fault parameters and their practical application. In: M.M. Odintsov (Ed.), Mechanism formation of the tectonic structures of Eastern Siberia. Nauka, Novosibirsk, p. 41–48 (in Russian) [Ружич В.В. Зависимость между параметрами разрывных нарушений и их практическое применение // Механизмы формирования тектонических структур Восточной Сибири / Ред. М.М. Одинцов. Новосибирск: Наука, 1977. С. 41–48].

59. Ruzhich V.V., 1980. Active faults in the area of the Kodar tunnel route, Baikal-Amur railroad. In: M.M. Odintsov (Ed.), Seismotectonics and seismicity of the BAM construction area. Nauka, Moscow, p. 77–86 (in Russian) [Ружич В.В. Активные разломы в районе Кодарского тоннеля трассы БАМ // Сейсмотектоника и сейсмичность района строительства БАМ / Ред. М.М. Одинцов. М.: Наука, 1980. С. 77–86].

60. Ruzhich V.V., 1997. Seismotectonic Destruction of the Earth's Crust in the Baikal Rift Zone. Publishing House of SB RAS, Novosibirsk, 144 p. (in Russian) [Ружич В.В. Cейсмотектоническая деструкция в земной коре Байкальской рифтовой зоны. Новосибирск: Изд-во СО РАН, 1997. 144 с.].

61. San’kov V., Déverchère J., Gaudemer Y., Houdry F., Filippov A., 2000. Geometry and rate of faulting in the North Baikal Rift, Siberia. Tectonics 19 (4), 707–722. http://dx.doi.org/10.1029/2000TC900012.

62. San’kov V.A., Dobrynina A.A., 2015. Modern fault formation in the Earth’s crust of the Baikal rift system according to the data on the mechanisms of earthquake sources. Doklady Earth Sciences 465 (1), 1191–1195. http://dx.doi.org/10.1134/S1028334X15110203.

63. San’kov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic geodynamics and mechanical coupling of crustal and upper mantle deformations in the Mongolia-Siberia mobile area. Geotectonics 45 (5), 378–393. http://dx.doi.org/10.1134/S0016852111050049.

64. Sanderson D.J., Marchini W.R.D., 1984. Transpression. Journal of Structural Geology 6 (5), 449–458. http://dx.doi.org/10.1016/0191-8141(84)90058-0.

65. Sankov V.A., Dneprovsky Yu.I., Kovalenko S.N., Bornyakov S.A., Gileva N.A., Gorbunova N.G., 1991. Faults and Seismicity of the North Muya Geodynamic Polygon. Nauka, Novosibirsk, 111 p. (in Russian) [Саньков В.А., Днепровский Ю.И., Коваленко С.Н., Борняков С.А., Гилева H.A., Горбунова Н.Г. Разломы и сейсмичность Северо-Муйского геодинамического полигона. Новосибирск: Наука, 1991. 111 с.]

66. Sankov V.A., Parfeevets A.V., Miroshnichenko A.I., Sankov A.V., Bayasgalan A., Battogtokh D., 2015. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia. Geodynamics & Tectonophysics 6 (4), 491–518 (in Russian) [Саньков В.А., Парфеевец А.В., Мирошниченко А.И., Саньков А.В., Баясгалан А., Баттогтох Д. Парагенез активных разломов и позднекайнозойское напряженное состояние земной коры центральной части Монголии // Геодинамика и тектонофизика. 2015. Т. 6. № 4. С. 491–518]. http://dx.doi.org/10.5800/GT-2015-6-4-0191.

67. Seminsky K.Zh., 2003. Internal Structure of Continental Fault Zones. Tectonophysical Aspect. Publishing House of SB RAS, Branch “Geo”, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Издательство СО РАН, Филиал «Гео», 2003. 244 с.].

68. Seminsky K.Zh., 2009. Major factors of the evolution of basins and faults in the Baikal Rift Zone: tectonophysical analysis. Geotectonics 43 (6), 486–500. http://dx.doi.org/10.1134/S001685210906003X.

69. Seminsky K.Zh., Gladkov A.S., Lounina O.V., Tougarina M.A., 2005. Internal Structure of Continental Fault Zones. Applied aspect. Publishing House of SB RAS, Branch “Geo”, Novosibirsk, 293 p. (in Russian) [Семинский К.Ж., Гладков А.С., Лунина О.В., Тугарина М.А. Внутренняя структура континентальных разломных зон. Прикладной аспект. Новосибирск: Издательство СО РАН, Филиал «Гео», 2005. 293 с.].

70. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Nauka, Novosibirsk, 102 p. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].

71. Sherman S.I., 1996. Destructive zones in the lithosphere, their state of stresses and seismicity. In: Neotectonics and recent geodynamics of continents and oceans. ITC, RAS, Moscow, p. 157–158 (in Russian) [Шерман С.И. Деструктивные зоны литосферы, их напряженное состояние и сейсмичность // Неотектоника и современная геодинамика континентов и океанов. М.: РАН, МТК, 1996. С. 157–158].

72. Sherman S.I., 2009. A tectonophysical model of a seismic zone: experience of development based on the example of the Baikal rift system. Izvestiya, Physics of the Solid Earth 45 (11), 938–951. http://dx.doi.org/10.1134/S1069351309110020.

73. Sherman S.I., Berzhinsky Yu.A., Pavlenov V.A., Aptikaev F.F., 2003. Regional Scales of Seismic Intensity. New Scale Applied to Pribaikalie. Publishing House of SB RAS, Branch “Geo”, Novosibirsk, 189 p. (in Russian) [Шерман С.И., Бержинский Ю.А., Павленов В.А., Аптикаев Ф.Ф. Региональные шкалы сейсмической интенсивности. Опыт создания шкалы для Прибайкалья. Новосибирск: Изд-во СО РАН, филиал «Гео», 2003. 189 с.].

74. Sherman S.I., Bornyakov S.A., Buddo V.Yu., 1985. Recommendations on estimation of width of fault zones (from physical modeling). IEC SB RAS, Irkutsk, 42 p. (in Russian) [Шерман C.И., Борняков С.А., Буддо В.Ю. Рекомендации по оценке ширины зон приразломных структурных изменений (по результатам физического моделирования). Иркутск: ИЗК СО РАН, 1985. 42 с.].

75. Sherman S.I., Dneprovsky Yu.I., 1989. Crustal Stress Fields and Geological and Structural Methods of Study. Nauka, Novosibirsk, 158 p. (in Russian) [Шерман С.И., Днепровский Ю.И. Поля напряжений земной коры и геологоструктурные методы их изучения. Новосибирск: Наука, 1989. 158 с.].

76. Sherman S.I., Levi K.G., 1978. Transform faults of the Baikal rift zone and seismicity of its flanks. In: Tectonics and seismicity of continental rift zones. Nauka, Moscow, p. 7–18 (in Russian) [Шерман С.И., Леви К.Г. Трансформные разломы Байкальской рифтовой зоны и сейсмичность ее флангов // Тектоника и сейсмичность континентальных рифтовых зон. М.: Наука, 1978. С. 7–18].

77. Sherman S.I., Levi K.G., Bornyakov S.A., 1980. Block tectonics of the area between the Muyakan and Angarakan rivers, and some aspects of its seismicity. In: M.M. Odintsov (Ed.), Seismotectonics and seismicity of the BAM construction area. Nauka, Moscow, p. 43–56 (in Russian) [Шерман С.И., Леви К.Г., Борняков С.А. Блоковая тектоника Муякан-Ангараканского междуречья и некоторые вопросы сейсмичности // Сейсмотектоника и сейсмичность района строительства БАМ / Ред. М.М. Одинцов. М.: Наука, 1980. С. 43–56].

78. Sherman S.I., Medvedev M.E., Ruzhich V.V., Kiselev A.I., Shmotov A.P., 1973. Tectonics and Volcanism of the Southwestern Part of the Baikal Rift Zone. Nauka, Novosibirsk, 136 p. (in Russian) [Шерман С.И., Медведев М.Е., Ружич В.В., Киселев А.И., Шмотов А.П. Тектоника и вулканизм юго-западной части Байкальской рифтовой зоны. Новосибирск: Наука, 1973. 136 с.].

79. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1992. Faulting in the Lithosphere. Tensile Stress Zones. Nauka, Siberian Branch, Novosibirsk, 227 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны растяжения. Новосибирск: Наука. Сибирское отделение, 1992. 227 с.].

80. Sherstyankin P.P., Alekseev S.P., Abramov A.M., Stavrov K.G., De Batist M., Hus R., Canals M., Casamor J.L., 2006. Computer-Based Bathymetric Map of Lake Baikal. Doklady Earth Sciences 408 (1), 564–569. http://dx.doi.org/10.1134/S1028334X06040131.

81. Solonenko A.V., Solonenko N.V., Melnikova V.I., Kozmin B.M., Kuchai O.A., Sukhanova S.S., 1993. Strains and displacements in earthquake foci of Siberia and Mongolia. In: Seismicity and seismic zoning of northern Eurasia, vol. 1. UIPE, Moscow, p. 113–122 (in Russian) [Солоненко А.В., Солоненко Н.В., Мельникова В.И., Козьмин Б.М., Кучай О.А., Суханова С.С. Напряжения и подвижки в очагах землетрясенийСибири и Монголии // Сейсмичность и сейсмическое районирование Северной Евразии. Вып. 1. М.: ОИФЗ РАН, 1993. C. 113–122].

82. Solonenko V.P., 1965. Live tectonics in the pleistoseist area of the Muya earthquake. Izvestiya AN SSSR, seriya Geologicheskaya (4), 58–70 (in Russian) [Солоненко В.П. Живая тектоника в плейстосейстовой области Муйского землетрясения // Известия АН СССР, серия Геологическая. 1965. № 4. С. 58–70].

83. Solonenko V.P., 1979. Seismology and Seismic Zoning of the BAM Route and Its Economic Influence Zone. Nauka, Novosibirsk, 70 p. (in Russian) [Солоненко В.П. Сейсмология и сейсмическое районирование трассы БАМ и зоны ее экономического влияния. Новосибирск: Наука, 1979. 70 с.].

84. Solonenko V.P. (Ed.), 1981. Seismogeology and Detailed Seismic Zonation of Pribaikal’e. Nauka, Novosibirsk, 168 p. (in Russian) [Сейсмогеология и детальное сейсмическое районирование Прибайкалья / Ред. В.П. Солоненко. Новосибирск: Наука, 1981. 168 с.].

85. Solonenko V.P., Mandelbaum M.M. (Eds.), 1985. Geology and Seismicity of the BAM Zone. Seismology and Seismic Zoning. Nauka, Novosibirsk, 192 p. (in Russian) [Геология и сейсмичность зоны БАМ. Сейсмогеология и сейсмическое районирование / Ред. В.П. Солоненко, М.М. Мандельбаум. Новосибирск: Наука, 1985. 192 с.].

86. Tiberi C., Diament M., Déverchère J., Petit-Mariani C., Mikhailov V., Tikhotsky S., Achauer U., 2003. Deep structure of the Baikal rift zone revealed by joint inversion of gravity and seismology. Journal of Geophysical Research 108 (B3), 2133. http://dx.doi.org/10.1029/2002JB001880.

87. Trifonov V.G., 2004. Active faults in Eurasia: general remarks. Tectonophysics 380 (3–4), 123–130. http://dx.doi.org/10.1016/j.tecto.2003.09.017.

88. Trifonov V.G., Soboleva O.V., Trifonov R.V., Vostrikov G.A., 2002. Recent Geodynamics of the Alpine-Himalayan Collision Belt. GEOS, Moscow, 225 p. (in Russian) [Трифонов В.Г., Соболева О.В., Трифонов Р.В., Востриков Г.А. Современная геодинамика Альпийско-Гималайского коллизионного пояса. М.: ГЕОС, 2002. 225 с.].

89. U.S. Geological Survey (and supporting agency), 2006. Quaternary fault and fold database for the United States. Available from: http://earthquake.usgs.gov/hazards/qfaults/ (last accessed 18.03.2016).

90. Ulomov V.I., 2009. On seismological engineering surveys in construction. Inzhenernye Izyskaniya (Engineering Surveys) (9), 28–39 (in Russian) [Уломов В.И. Об инженерно-сейсмологических изысканиях в строительстве // Инженерные изыскания. 2009. № 9. C. 28–39].

91. Wells D.L., Coppersmith K.J., 1994. New emprical relationship among magnitude, rupture length, rupture width, rupture area and surface displacement. Bulletin of Seismological Society of America 84 (4), 974–1002.

92. Yu Gui-hua, Du Ke-ping, Xu Xi-wei, Wu Xi-yan, Wang Yin Yu, 2012. Research on active fault database construction related issue. Seismology and Geology 4, 713–725.

93. Zamaraev S.M., Vasiliev E.P., Mazukabzov A.M., Ruzhich V.V., Ryazanov G.V., 1979. The Ratio of Ancient and Cenozoic Structures in the Baikal Rift Zone. Nauka, Novosibirsk, 124 p. (in Russian) [Замараев С.М., Васильев Е.П., Мазукабзов А.М., Ружич В.В., Рязанов Г.В. Соотношение древней и кайнозойской структур в Байкальской рифтовой зоне. Новосибирск: Наука, 1979. 124 с.].

94. Zonenshain L.P., Kaz’min V.G., Kuz’min M.I., 1995. New data on the Baikal history: observations from manned submersibles. Geotektonika (Geotectonics) (3), 46–58 (in Russian) [Зоненшайн Л.П., Казьмин В.Г., Кузьмин М.И. Новые данные по истории Байкала: результаты наблюдений с подводных обитаемых аппаратов // Геотектоника. 1995. № 3. С. 46–58].

95. Zorin Yu.A., 1981. The Baikal rift: an example of the intrusion of asthenospheric material into the lithosphere as the cause of disruption of lithospheric plates. Tectonophysics 73 (1–3), 91–104. http://dx.doi.org/10.1016/0040-1951 (81)90176-1.

96. Zorin Yu.A., Turutanov E.Kh., Mordvinova V.V., Kozhevnikov V.M., Yanovskaya T.B., Treusov A.B., 2003. The Baikal rift zone: the effect of mantle plumes on older structure. Tectonophysics 371 (1–4), 153–173. http://dx.doi.org/10.1016/S0040-1951(03)00214-2.


Supplementary files

1. DigitalMaps
Subject
Type Other
Download (1MB)    
Indexing metadata ▾

Review

For citations:


Lunina O.V. THE DIGITAL MAP OF THE PLIOCENE–QUATERNARY CRUSTAL FAULTS IN THE SOUTHERN EAST SIBERIA AND THE ADJACENT NORTHERN MONGOLIA. Geodynamics & Tectonophysics. 2016;7(3):407-434. (In Russ.) https://doi.org/10.5800/GT-2016-7-3-0215

Views: 12817


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)