Preview

Геодинамика и тектонофизика

Расширенный поиск

ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА BCC-FE ДО ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ И ДО ДАВЛЕНИЯ 15 ГПА

https://doi.org/10.5800/GT-2014-5-4-0166

Аннотация

На основе свободной энергии Гельмгольца построено уравнение состояния железа с объемно-центрированной кубической решеткой (bcc-Fe) путем одновременной оптимизации ультразвуковых, рентгеновских, дилатометрических и термохимических измерений в температурном интервале от 100 К до температуры плавления и до давления 15 ГПа. Рассчитанные термодинамические функции bcc-Fe хорошо согласуются со справочными данными и экспериментальными измерениями при атмосферном давлении, а также с PVT измерениями в области температур до 773 К и давлений до 16 ГПа. Приведена табуляция термодинамических функций bcc-Fe (x, a, SCPCVKTKSK'GT,P) до температуры 1811 К и давления до 15 ГПа. Рассчитанные PVT соотношения bcc-Fe могут быть использованы для расчета давления при заданных температурах и объемах.

Об авторах

П. И. Дорогокупец
Институт земной коры СО РАН, Иркутск, Россия
Россия

докт. геол.-мин. наук, зав. лабораторией петрологии,
геохимии и рудогенеза
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия



Т. С. Соколова
Институт земной коры СО РАН, Иркутск, Россия
Россия

канд. геол.-мин. наук, м.н.с.
Институт земной коры СО РАН
664033, Иркутск, ул. Лермонтова, 128, Россия



К. Д. Литасов
Институт геологии и минералогии им. В.С. Соболева СО РАН, Новосибирск, Россия Новосибирский государственный университет, Новосибирск, Россия
Россия

докт. геол.-мин. наук, г.н.с.
Институт геологии и минералогии им. В.С. Соболева СО РАН
630090, Новосибирск, просп. академика Коптюга, 3, Россия



Список литературы

1. Adams J.J., Agosta D.S., Leisure R.G., Ledbetter H., 2006. Elastic constants of monocrystal iron from 3 to 500 K. Journal of Applied Physics 100 (11), 113530. http://dx.doi.org/10.1063/1.2365714.

2. Al’tshuler L.V., Brusnikin S.E., Kuz’menkov E.A., 1987. Isotherms and Grüneisen functions for 25 metals. Journal of Applied Mechanics and Technical Physics 28 (1), 129–141. http://dx.doi.org/10.1007/BF00918785.

3. Basinski Z.S., Hume-Rothery W., Sutton A.L., 1955. The lattice expansion of iron. Proceeding of the Royal Society A 229 (1179), 459–467. http://dx.doi.org/10.1098/rspa.1955.0102.

4. Bazhanova Z.G., Oganov A.R., Gianola O., 2012. Fe-C and Fe-H systems at pressures of the Earth's inner core. Physics-Uspekhi 55 (5), 489–497. http://dx.doi.org/10.3367/UFNe.0182.201205c.0521.

5. Bergman G.A., Handamirova N.E., Gusarov A.V., 2004. Thermodynamics properties of iron. http://www.chem.msu.su/Zn/Fe/Fe_c.html.

6. Brosh E., Makov G., Shneck R.Z., 2007. Application of CALPHAD to high pressures. CALPHAD 31 (2), 173–185. http://dx.doi.org/10.1016/j.calphad.2006.12.008.

7. Brown J.M., 1999. The NaCl pressure standard. Journal of Applied Physics 86 (10), 5801–5808. http://dx.doi.org/ 10.1063/1.371596.

8. Burakovsky L., Preston D.L., 2004. Analytic model of the Grüneisen parameter all densities. Journal of Physics and Chemistry of Solids 65 (8–9), 1581–1587. http://dx.doi.org/10.1016/j.jpcs.2003.10.076.

9. Decker D.L., 1965. Equation of state of NaCl and its use as a pressure gauge in high-pPressure research. Journal of Applied Physics 36 (1), 157–161. http://dx.doi.org/10.1063/1.1713864.

10. Decker D.L., 1971. High-pressure equation of state for NaCl, KCl, and CsCl. Journal of Applied Physics 42 (8), 3239–3244. http://dx.doi.org/10.1063/1.1660714.

11. Desai P.D., 1986. Thermodynamic properties of iron and silicon. Journal of Physical and Chemical Reference Data 15 (3), 967–983. http://dx.doi.org/10.1063/1.555761.

12. Dever D.J., 1972. Temperature dependence of the elastic constants in α-iron single crystals: relationship to spin order and diffusion anomalies. Journal of Applied Physics 43 (8), 3293–3301. http://dx.doi.org/10.1063/1.1661710.

13. Dewaele A., Loubeyre P., Occelli F., Mezouar M., Dorogokupets P.I., Torrent M., 2006. Quasihydrostatic equation of state of iron above 2 Mbar. Physical Review Letters 97, 215504. http://dx.doi.org/10.1103/PhysRevLett.97.215504.

14. Dinsdale A.T., 1991. SGTE data for pure elements. CALPHAD 15 (4), 317–425. http://dx.doi.org/10.1016/0364-5916(91)90030-N.

15. Dorogokupets P.I., 2010. P–V–T equations of state of MgO and thermodynamics. Physics and Chemistry of Minerals 37 (9), 677–684. http://dx.doi.org/10.1007/s00269-010-0367-2.

16. Dorogokupets P.I., Dewaele A., 2007. Equations of state of MgO, Au, Pt, NaCl-B1, and NaCl-B2: Internally consistent high-temperature pressure scales. High Pressure Research 27 (4), 431–446. http://dx.doi.org/10.1080/08957950701659700.

17. Dorogokupets P.I., Oganov A.R., 2007. Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shockwave, ultrasonic, X-ray, and thermochemical data at high temperatures and pressures. Physical Review B 75, 024115. http://dx.doi.org/10.1103/PhysRevB.75.024115.

18. Dorogokupets P.I., Sokolova T.S., Danilov B.S., Litasov K.D., 2012. Near-absolute equations of state of diamond, Ag, Al, Au, Cu, Mo, Nb, Pt, Ta, and W for quasi-hydrostatic conditions. Geodynamics & Tectonophysics 3 (2), 129–166, http://dx.doi.org/10.5800/GT-2012-3-2-0067.

19. Fei Y., Ricolleau A., Frank M., Mibe K., Shen G., Prakapenka V., 2007. Toward an internally consistent pressure scale. Proceedings of the National Academy of Sciences 104 (22), 9182–9186. http://dx.doi.org/10.1073/pnas.0609013104.

20. Funtikov A., 2000. Phase diagram of iron: Implications for the state of the Earth's core. Izvestiya, Physics of the Solid Earth 36 (11), 958–964.

21. Funtikov A., 2003. Phase diagram and melting curve of iron obtained using the data of static and shock-wave measurements. High temperature 41 (6), 850–864. http://dx.doi.org/10.1023/B:HITE.0000008344.89730.69.

22. Giles P.M., Longenbach M.H., Marder A.R., 1971. High-pressure α ⇄ ε martensitic transformation in iron. Journal of Applied Physics 42 (11), 4290–4295. http://dx.doi.org/10.1063/1.1659768.

23. Hirose K., Labrosse S., Hernlund J., 2013. Composition and state of the core. Annual Reviews Earth and Planetary Sciences 41, 657–691. http://dx.doi.org/10.1146/annurev-earth-050212-124007.

24. Huang E., Bassett W.A., Tao P., 1987. Pressure-temperature-volume relationship for hexagonal close packed iron determined by synchrotron radiation. Journal of Geophysical Research 92 (B8), 8129–8135. http://dx.doi.org/10.1029/JB092iB08p08129.

25. Isaak D.G., Masuda K., 1995. Elastic and viscoelastic properties of a iron at high temperatures. Journal of Geophysical Research 100 (B9), 17689–17698. http://dx.doi.org/10.1029/95JB01235.

26. Jacobs M.H., Schmid-Fetzer R., 2010. Thermodynamic properties and equation of state of fcc aluminum and bcc iron, derived from a lattice vibrational method. Physics and Chemistry of Minerals 37 (10), 721–739. http://dx.doi.org/10.1007/s00269-010-0371-6.

27. Jephcoat A.P., Mao H.K., Bell P.M., 1986. Static compression of iron to 78 GPa with rare gas solids as pressure-transmitting media. Journal of Geophysical Research 91 (B5), 4677–4684. http://dx.doi.org/10.1029/JB091iB05p04677.

28. Kohlhaas R., Dünner P., Schmitz-Pranghe N., 1967. Über die temperaturabhängigkeit der gitterparameter von eisen, kobalt und nickel im bereich hoher temperature. Zeitschrift für angewandte. Physik 23, 245–249.

29. Komabayashi T., 2014. Thermodynamics of melting relations in the system Fe-FeO at high pressure: Implications for oxygen in the Earth’s core. Journal of Geophysical Research: Solid Earth 119 (5), 4164–4177. http://dx.doi.org/10.1002/2014JB010980.

30. Komabayashi T., Fei Y., 2010. Internally consistent thermodynamic database for iron to the Earth's core conditions. Journal of Geophysical Research 115 (B3), B03202. http://dx.doi.org/10.1029/2009JB006442.

31. Liu J.L., Lin J.-F., Alatas A., Bi W., 2014. Sound velocities of bcc-Fe and Fe0.85Si0.15 alloy at high pressure and temperature. Physics of the Earth and Planetary Interiors 233, 24–32. http://dx.doi.org/10.1016/j.pepi.2014.05.008.

32. Lu X.-G., Selleby M., Sundman B., 2005. Assessments of molar volume and thermal expansion for selected bcc, fcc and hcp metallic elements. CALPHAD 29 (1), 68–89. http://dx.doi.org/10.1016/j.calphad.2005.05.001.

33. Mao H.K., Bassett W.A., Takahasi T., 1967. Effect of pressure on crystal structure and lattice parameters of iron up to 300 kbar. Journal of Applied Physics 38 (1), 272–276. http://dx.doi.org/10.1063/1.1708965.

34. Medvedev A.B., 2014. Wide-range multiphase equation of state for iron. Combustion, Explosion, and Shock Waves 50 (5), 582–598. http://dx.doi.org/10.1134/S0010508214050141.

35. Novikova S.I., 1974. Thermal Expansion of Solids. Nauka, Moscow, 294 p. (in Russian) [Новикова С.И. Тепловое расширение твердых тел. М.: Наука, 1974. 294 с.].

36. Pankov V.L., Ullmann W., Heinrich R., Kracke D., 1998. Thermodynamics of deep geophysical media. Russian Journal of Earth Sciences 1 (1), 11–49. http://dx.doi.org/10.2205/1998ES000002.

37. Robie R.A., Hemingway B.S., Fisher J.R., 1978. Thermodynamic properties of minerals and related substances at 298.15 K and 1 bar (105 Pascals) pressure and at high temperatures. U.S. Geological Survey Bulletin 1452, 1–456.

38. Saxena S.K., Dubrovinsky L.S., 1998. Thermodynamics of iron phases at high pressures and temperatures. In: M.H. Manghnani, T. Yagi (Eds.), Properties of Earth and Planetary Materials. AGU, Washington D.C., p. 271–279.

39. Sokolova T.S., Dorogokupets P.I., Litasov K.D., 2013. Self-consistent pressure scales based on the equations of state for ruby, diamond, MgO, B2-NaCl, as well as Au, Pt, and other metals to 4 Mbars and 3000 K. Russian Geology and Geophysics 54 (2), 181–199. http://dx.doi.org/10.1016/j.rgg.2013.01.005.

40. Strässle Th., Klotz S., Kunc K., Pomjakushin V., White J.S., 2014. Equation of state of lead from high-pressure neutron diffraction up to 8.9 GPa and its implication for the NaCl pressure scale. Physical Review B 90, 014101. http://dx.doi.org/10.1103/PhysRevB.90.014101.

41. Swartzendruber, L., 1982. The Fe (Iron) System. Journal of Phase Equilibria 3 (2), 161–165. http://dx.doi.org/10.1007/BF02892374.

42. Tonkov E.Y., Ponyatovsky E.G., 2005. Phase transformations of elements under high pressure. CRC Press Boca Raton, Florida, 377 p.

43. Vinet P., Ferrante J., Rose J.H., Smith J.R., 1987. Compressibility of solids. Journal of Geophysical Research 92 (B9), 9319–9325. http://dx.doi.org/10.1029/JB092iB09p09319.

44. Zhang J., Guyot F., 1999. Experimental study of the bcc-fcc phase transformations in the Fe-rich system Fe–Si at high pressures. Physics and Chemistry of Minerals 26 (6), 419–424. http://dx.doi.org/10.1007/s002690050203.

45. Zharkov V.N., Kalinin V.A., 1971. Equations of State of Solids at High Pressures and Temperatures. Consultants Bureau, New York, 257 p.


Рецензия

Для цитирования:


Дорогокупец П.И., Соколова Т.С., Литасов К.Д. ТЕРМОДИНАМИЧЕСКИЕ СВОЙСТВА BCC-FE ДО ТЕМПЕРАТУРЫ ПЛАВЛЕНИЯ И ДО ДАВЛЕНИЯ 15 ГПА. Геодинамика и тектонофизика. 2014;5(4):1033-1044. https://doi.org/10.5800/GT-2014-5-4-0166

For citation:


Dorogokupets P.I., Sokolova T.S., Litasov K.D. THERMODYNAMIC PROPERTIES OF BCC-FE TO MELTING TEMPERATURE AND PRESSURE TO 15 GPA. Geodynamics & Tectonophysics. 2014;5(4):1033-1044. (In Russ.) https://doi.org/10.5800/GT-2014-5-4-0166

Просмотров: 1303


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)