Preview

Geodynamics & Tectonophysics

Advanced search

ON DISCRETE STRUCTURE OF GEOLOGIC MEDIUM AND CONTINUAL APPROACH TO MODELING ITS MOVEMENTS

https://doi.org/10.5800/GT-2016-7-3-0213

Abstract

This paper discusses the structure of a geologic medium represented by accessible lithified rocks and provides an overview of methods used to describe its movements. Two basic opinions are considered in the framework of the discussion: (1) an initially homogeneous and continuous geologic medium acquires the structure composed of blocks in the process of the geologic medium’s deformation/destruction/degradation, and (2) a geologic medium is composed of blocks (and often has hierarchic, active, energy-saturated features), and the continuity model is thus not valid for describing the geologic medium’s deformation. Proponents of the first point of view actively apply the standard or modified continuum model of a solid deformed body (SDB) in estimations of the stress-strain state, but the input parameters of this model do not contain any information on discreteness in principle. Authors who support the second opinion, either explicitly or implicitly assume that the block structure of the geologic medium, which is detectable by geological methods, makes a direct and unambiguous impact on all other mechanical properties of the geologic medium and, above all, on the nature of its movements.

Based on results obtained by interpreting the data collected in our long-term field studies of rock fracturing, mathematical processing of GPS-measurements, and theoretical models, we agree with the concept of the geologic medium’s block structure, but argue that the geologic block-structure property is not acquired but congenital. Regarding sedimentary rocks, it means that the discrete structure has been already embodied in the rock before sediment lithification, regardless of the intensity of macroscopic deformations. A discrete structure is the form of the geologic medium existence and a cause of the congenital anisotropy of the geologic medium’s strength characteristics. Due to subsequent deformation of the geologic medium, some elements of the structure can be manifested more clearly, and the structure itself can become more complex due to secondary effects. At the same time, the structure of geologic blocks is not directly manifested in the spatial and temporal features of the recent movements in the geologic medium. However, it is not an obstacle to developing continuum models of such movements in the same way as, for instance, the adequacy of the continuum general theory of relativity is not denied in view of the discrete-hierarchical structure of the Universe.

The key requirements to a model include its applicability, testability, confirmability/deniability of its predictions in the investigated space-time scale, and compliance with conservation laws. This paper briefly discusses the most important aspects of the continuum approach based on the concept of an effective continuous medium and, above all, the Cauchy continuum model, envisaging that the dynamic response of the medium in spatial descriptions is given only by the Cauchy symmetric stress tensor (T). In more general continuum models of the medium (such as moment, micropolar, micromorphic and other models), the dynamics of the medium may be characterized by asymmetric tensors of force and couple stresses.

This paper refutes the unjustified criticism of the continuum model as such criticism is rooted in the mistaken identification of quite special assumptions or ways of setting the problems with the general principles of the continuity model. Special attention is given to critical comments received from supporters of the active geologic medium concept. The paper considers actual difficulties encountered in studies using the continuity model, specifically in coordinated descriptions of the medium containing mobile defects, as well as the medium that is subject to deformation due to movements on its structure, while this structure is hierarchical at any scale level, down to the zero level (which, in particular, concerns the fractal structure). Discussed are causes of some widespread misunderstandings and mistakes in the geoscience literature, as well as the occurrence of conditions facilitating the revival of Aristotle ideas and preNewton concepts in geology, which repeatedly gain the upper hand over the modern ideas of classical physics. The paper considers the problem of reconstruction of stresses in the geologic medium from in-situ kinematic indicators, specifically from irreversible slips. Attention is drawn to the fact that the currently dominating approach ‘imposes’ a priori speculative rules on the geologic medium, such as a relationship between stresses (to be estimated) and the slip directions. Under this approach, the conservation laws are inevitably ignored, which makes it impossible to interpret the obtained results in terms of stress. Under the alternative approach proposed earlier by the author of this paper, the conservation laws being taken into account allows not only to reconstruct the stress tensor field, but also to judge on the geologic medium rheology. It is concluded that rejecting the continuum approach a priori, with a reference to the geologic medium discreteness, is at least unconstructive.

About the Author

Sh. A. Mukhamediev
O.Yu. Schmidt Institute of Physics of the Earth of RAS
Russian Federation

Doctor of Physics and Mathematics, Chief Researcher,

10 Bol’shaya Gruzinskaya street, Moscow D-242 123242, GSP-5,

shamil@ifz.ru



References

1. Abbott B.P. et al. (LIGO Scientific Collaboration and Virgo Collaboration), 2016. Observation of gravitational waves from a binary black hole merger. Physical Review Letters 116 (6), 061102. http://dx.doi.org/10.1103/PhysRev Lett.116.061102.

2. Ambrosi D., Pettinati V., Ciarletta P., 2015. Active stress as a local regulator of global size in morphogenesis. International Journal of Non-Linear Mechanics 75, 5–14. http://dx.doi.org/10.1016/j.ijnonlinmec.2014.11.027.

3. Angelillo M. (Ed.), 2014. Mechanics of Masonry Structures. Springer, Vienna, 341 p.

4. Aristotle, 1981. Physics. In: I.D. Rozhansky (Ed.), Tractates. Four volumes. Volume 3. Mysl, Moscow, p. 59–262 (in Russian) [Аристотель. Физика // Аристотель. Сочинения. В 4-х томах. Т. 3 / Ред. И.Д. Рожанский. М.: Мысль, 1981. С. 59–262].

5. Avouac J.P., Tapponnier P., 1993. Kinematic model of active deformation in central Asia. Geophysical Research Letters 20 (10), 895–898. http://dx.doi.org/10.1029/93GL00128.

6. Bayuk I.O., 2013. Modelling reservoir rock physics: basic principles. Tekhnologii Seismorazvedki (Seismic Technology) (4), 1–27 (in Russian) [Баюк И.О. Основные принципы математического моделирования макроскопических физических свойств коллекторов углеводородов // Технологии сейсморазведки. 2013. № 4. С. 5–18].

7. Bažant Z.P., Yavari A., 2007. Response to A. Carpinteri, B. Chiaia, P. Cornetti and S. Puzzi’s comments on “Is the cause of size effect on structural strength fractal or energetic-statistical?”. Engineering Fracture Mechanics 74 (17), 2897–2910. http://dx.doi.org/10.1016/j.engfracmech.2007.02.026.

8. Belousov T.P., Mukhamediev S.A., 1990. On reconstruction of palaeostresses from rock fracturing. Izvestiya AN SSSR, seriya Fizika Zemli (Izvestiya, Physics of the Solid Earth) (2), 16–29 (in Russian) [Белоусов Т.П., Мухамедиев Ш.А. К реконструкции палеонапряжений по трещиноватости горных пород // Известия АН СССР, серия Физика Земли. 1990. № 2. С. 16–29].

9. Belousov T.P., Mukhamediev Sh.A., Chichagov V.P., 1993. Stress-relief deformation in the epicentral zone of the 1991 Racha earthquake (Southern slope of the Greater Caucasus). Doklady AN 333 (6), 775–779 (in Russian) [Белоусов Т.П., Мухамедиев Ш.А., Чичагов В.П. Деформации разгрузки в эпицентральной зоне Рачинского землетрясения на юге Большого Кавказа // Доклады АН. 1993. Т. 333. № 6. С. 775–779].

10. Bott M.H.P., 1959. The mechanics of oblique slip faulting. Geological Magazine 96 (02), 109–117. http://dx.doi.org/10.1017/S0016756800059987.

11. Bykov A.A., Mukhamediev Sh.A., Shishko A.N., 2014. Experimentally studying the behavior of inhomogeneities of a transparent model material under loading. Problemy Prochnosti i Plastichnosti (Problems of Strength and Plasticity) 76 (3), 243–250 (in Russian) [Быков А.А., Мухамедиев Ш.А., Шишко А.Н. Экспериментальное исследование поведения микронеоднородностей при нагружении прозрачного модельного материала // Проблемы прочности и пластичности. 2014. Вып. 76 (3). С. 243–250].

12. Carpinteri A., Chiaia B., Cornetti P., Puzzi S., 2007. Comments on “Is the cause of size effect on structural strength fractal or energetic-statistical?” by Bažant & Yavari. Engineering Fracture Mechanics 74 (17), 2892–2896. http://dx.doi.org/10.1016/j.engfracmech.2007.02.006.

13. Cheng W., Jin Y., Chen M., 2015. Reactivation mechanism of natural fractures by hydraulic fracturing in naturally fractured shale reservoirs. Journal of Natural Gas Science and Engineering 27, 1357–1365. http://dx.doi.org/10.1016/j.jngse.2015.11.018.

14. Confucius, 2006. Judgments and Conversations. Phoenix, Moscow. 304 p. (in Russian) [Конфуций. Суждения и беседы. М.: Феникс, 2006. 304 с.].

15. Davydov D., Pelteret J.P., Steinmann P., 2014. Comparison of several staggered atomistic-to-continuum concurrent coupling strategies. Computer Methods in Applied Mechanics and Engineering 277, 260–280. http://dx.doi.org/10.1016/j.cma.2014.04.013.

16. Dell’Isola F., Maier G., Perego U., Andreaus U., Esposito R., Forest S. (Eds.), 2014. The Complete Works of Gabrio Piola, vol. I. Springer, Cham, Switzerland, 816 p.

17. Disy E., Garner J., 1999. Hypothetical pre-classical equations of motion. The Physics Teacher 37 (1), 42–45. http://dx.doi.org/10.1119/1.880157.

18. Drapaca C.S., Sivaloganathan S., 2012. A fractional model of continuum mechanics. Journal of Elasticity 107 (2), 105–123. http://dx.doi.org/10.1007/s10659-011-9346-1.

19. Du Bernard X., Eichhubl P., Aydin A., 2002. Dilation bands: A new form of localized failure in granular media. Geophysical Research Letters 29 (24), 2176. http://dx.doi.org/10.1029/2002GL015966.

20. Dyskin A.V., 2004. Continuum fractal mechanics of the Earth’s crust. Pure and Applied Geophysics 161 (9–10), 1979–1989. http://dx.doi.org/10.1007/s00024-004-2544-2.

21. Engelder T., 1982. Is there a genetic relationship between selected regional joints and contemporary stress within the lithosphere of North America? Tectonics 1 (2), 161–177. http://dx.doi.org/10.1029/TC001i002p00161.

22. England P., Molnar P., 1997. Active deformation of Asia: from kinematics to dynamics. Science 278 (5338), 647–650. http://dx.doi.org/10.1126/science.278.5338.647.

23. England P., Molnar P., 2005. Late Quaternary to decadal velocity fields in Asia. Journal of Geophysical Research 110 (B12), B12401. http://dx.doi.org/10.1029/2004JB003541.

24. Eringen A.C., 2002. Nonlocal Continuum Field Theories. Springer, New York, 377 p.

25. Eshelby J.D., 1970. Energy relations and the energy-momentum tensor in continuum mechanics. In: M.F. Kanninen, W.F. Alder, A.R. Rosenfield, R.I. Joffee (Eds.), Inelastic behavior of solids. Mc Graw-Hill, New York, p. 77–115.

26. Everitt C.W.F., DeBra D.B., Parkinson B.W., Turneaure J.P., Conklin J.W., Heifetz M.I., Keiser G.M., Silbergleit A.S., Holmes T., Kolodziejczak J., Al-Meshari M., Mester J.C., Muhlfelder B., Solomonik V.G., Stahl K., Worden P.W., Bencze W., Buchman S., Clarke B., Al-Jadaan A., Al-Jibreen H., Li J., Lipa J.A., Lockhart J.M., Al-Suwaidan B., Taber M., Wang S., 2011. Gravity probe B: final results of a space experiment to test general relativity. Physical Review Letters 106 (22), 221101. http://dx.doi.org/10.1103/PhysRevLett.106.221101.

27. Galybin A.N., Mukhamediev S.A., 2004. Determination of elastic stresses from discrete data on stress orientations. International Journal of Solids and Structures 41 (18), 5125–5142. http://dx.doi.org/10.1016/j.ijsolstr.2004.04.007.

28. Galybin A.N., Mukhamediev S.A., 2014. Fracture development on a weak interface ahead of a fluid-driven crack. Engineering Fracture Mechanics 129, 90–101. http://dx.doi.org/10.1016/j.engfracmech.2014.08.005.

29. Garagash I.A., Nikolaevskiy V.N., 2009. Cosserat mechanics in Earth sciences. Vychislitel'naya Mekhanika Sploshnykh Sred (Computational Continuum Mechanics) 2 (4), 44–66 (in Russian) [Гарагаш И.А., Николаевский В.Н. Механика Коссера для наук о Земле // Вычислительная механика сплошных сред. 2009. Т. 2. № 4. С. 44–66]. http://dx.doi.org/10.7242/1999-6691/2009.2.4.31.

30. Gill S.P.A., 2009. Pore migration under high temperature and stress gradients. International Journal of Heat and Mass Transfer 52 (5), 1123–1131. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.10.004.

31. Ginzburg V.L., 1946. Book Review: L. Landau and E. Lifshitz. Continuum Mechanics. Gostekhizdat, Moscow, Leningrad, 1944 // Uspekhi Fizicheskikh Nauk 28 (2–3), 384–386 (in Russian) [Гинзбург В.Л. Рецензия на книгу: Л. Ландау и Е. Лифшиц. Механика сплошных сред. М.–Л.: Гостехиздат, 1944 // Успехи физических наук. 1946. Т. 28. № 2–3. С. 384–386. http://dx.doi.org/10.3367/UFNr.0028.194602k.0384].

32. Goldhirsch I., Goldenberg C., 2005. Stress in dense granular materials. In: H. Hinrichsen, D.E. Wolf (Eds.), The Physics of granular media. Wiley-VCH, Weinheim, p. 3–22. http://dx.doi.org/10.1002/352760362X.ch1.

33. Goldin S.V., 2002. Lithosphere destruction and physical mesomechanics. Fizicheskaya Mezomekhanika (Physical Mesomechanics) 5 (5), 5–20 (in Russian) [Гольдин С.В. Деструкция литосферы и физическая мезомеханика // Физическая мезомеханика. 2002. Т. 5. № 5. С. 5–22].

34. Grachev A.F., 2007. Regular orientation of joints in horizontally bedded sedimentary rocks of the East European platform. Izvestiya, Physics of the Solid Earth 43 (5), 360–377. http://dx.doi.org/10.1134/S1069351307050035.

35. Grachev A.F., Mukhamediev S.A., 2010. On the nature of the junction zone between the Vienna and Pannonian sedimentary basins. Izvestiya, Physics of the Solid Earth 46 (10), 849–861. http://dx.doi.org/10.1134/S1069351310100058.

36. Gray G.G., Morgan J.K., Sanz P.F., 2014. Overview of continuum and particle dynamics methods for mechanical modeling of contractional geologic structures. Journal of Structural Geology 59, 19–36. http://dx.doi.org/10.1016/j.jsg.2013.11.009.

37. Gushchenko O.I., 1973. Analysis of tectonic shear displacement orientations and their tectonophysical interpretation for reconstructions of palaeostresses. Doklady AN SSSR 210 (2), 331–334 (in Russian) [Гущенко О.И. Анализ ориентировок сколовых тектонических смещений и их тектонофизическая интерпретация при реконструкции палеонапряжений // Доклады АН СССР. 1973. Т. 210. № 2. С. 331–334].

38. Hancock P.L., Engelder T., 1989. Neotectonic joints. Geological Society of America Bulletin 101 (10), 1197–1208. http://dx.doi.org/10.1130/0016-7606(1989)101<1197:NJ>2.3.CO;2.

39. Hawkins R.J., Liverpool T.B., 2014. Stress reorganization and response in active solids. Physical Review Letters 113 (2), 028102. http://dx.doi.org/10.1103/PhysRevLett.113.028102.

40. Heaton T.H., 1990. Evidence for and implications of self-healing pulses of slip in earthquake rupture. Physics of the Earth and Planetary Interiors 64 (1), 1–20. http://dx.doi.org/10.1016/0031-9201(90)90002-F.

41. Ivlev D.D., 1966. The Theory of Ideal Plasticity. Nauka, Moscow, 232 p. (in Russian) [Ивлев Д.Д. Теория идеальной пластичности. М.: Наука, 1966. 232 с.].

42. Kerr R.P., 1963. Gravitational field of a spinning mass as an example of algebraically special metrics. Physical Review Letters 11 (5), 237–238. http://dx.doi.org/10.1103/PhysRevLett.11.237.

43. Kondaurov V.I., 1986. Energy approach to problems of continual destruction. Izvestiya AN SSSR, seriya Fizika Zemli (Izvestiya, Physics of the Solid Earth) (6), 17–22 (in Russian) [Кондауров В.И. Энергетический подход к задачам континуального разрушения // Известия АН СССР, серия Физика Земли. 1986. № 6. С. 17–22].

44. Kondaurov V.I., Mukhamediev Sh.A., Nikitin L.V., Ryzhak E.I., 1987. Mechanics of Rock Destruction. Nauka, Moscow, 218 p. (in Russian) [Кондауров В.И., Мухамедиев Ш.А., Никитин Л.В., Рыжак Е.И. Механика разрушения горных пород. М.: Наука, 1987. 218 с.].

45. Koronovskii N.V., Naimark A.A., 2015. On the continuity and discreteness of the lithosphere in the problems of dynamic geology. Moscow University Geology Bulletin 70 (1), 69–76. http://dx.doi.org/10.3103/S0145875215010020.

46. Koronovsky N.V., Naimark A.A., 2013. Methods of dynamic geology on critical border of applicability. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences (1), 152–162 (in Russian) [Короновский Н.В., Наймарк А.А. Методы динамической геологии на критическом рубеже применимости // Вестник КРАУНЦ, серия Науки о Земле. 2013. № 1. С. 152–162].

47. Kostrov B.V., Das S., 1984. Evaluation of stress and displacement fields due to an elliptical plane shear crack. Geophysical Journal of the Royal Astronomical Society 78 (1), 19–33. http://dx.doi.org/10.1111/j.1365-246X.1984.tb06469.x.

48. Kruskal M.D., 1960. Maximal extension of Schwarzschild metric. Physical Review 119 (5), 1743–1745. http://dx.doi.org/10.1103/PhysRev.119.1743.

49. Kuksenko V.S., Makhmudov K.F., Manzhikov B.T., 2010. Damage accumulation model for solids and the catastrophy prediction for large-scale objects. Journal of Mining Science 46 (4), 384–393. http://dx.doi.org/10.1007/s10913-010-0048-z.

50. Kuzikov S.I., Mukhamediev S.A., 2010. Structure of the present-day velocity field of the crust in the area of the CentralAsian GPS network. Izvestiya, Physics of the Solid Earth 46 (7), 584–601. http://dx.doi.org/10.1134/S1069351310070037.

51. Landau L.D., Lifshitz E.M., 1987. Theoretical Physics. 10 volumes. Volume VII. Elasticity Theory. Textbook. 4th ed., rev. and ext. Nauka, Moscow, 248 p. (in Russian) [Ландау Л.Д., Лившиц Е.М. Теоретическая физика. В 10 томах. Т. VII. Теория упругости: Учебное пособие. 4-е изд., испр. и доп. М.: Наука, 1987. 248 с.].

52. Lekhin I.V., Petrov F.N. (Eds.), 1949. Dictionary of Foreign Words, 3rd rev. and ext. ed. GIINS, Moscow, 805 p. (in Russian) [Словарь иностранных слов. 3-е перераб. и доп. изд. / Ред. И.В. Лехин, Ф.Н. Петров М.: ГИИНС, 1949. 805 с.].

53. Li J., Ostoja-Starzewski M., 2011. Micropolar continuum mechanics of fractal media. International Journal of Engineering Science 49 (12), 1302–1310. http://dx.doi.org/10.1016/j.ijengsci.2011.03.010.

54. Li S., Urata S., 2016. An atomistic-to-continuum molecular dynamics: Theory, algorithm, and applications. Computer Methods in Applied Mechanics and Engineering 306, 452–478. http://dx.doi.org/10.1016/j.cma.2016.03.048

55. Lin W., Conin M., Moore J.C., Chester F.M., Nakamura Y., Mori J.J., Anderson L., Brodsky E.E., Eguchi N., Cook B., Jeppson T., Wolfson-Schwehr M., Sanada Y., Saito S., Kido Y., Hirose T., Behrmann J.H., Ikari M., Ujiie K., Rowe C., Kirkpatrick J., Bose S., Regalla C., Remitti F., Toy V., Fulton P., Mishima T., Yang T., Sun T., Ishikawa T., Sample J., Takai K., Kameda J., Toczko S., Maeda L., Kodaira S., Hino R., Saffer D., 2013. Stress state in the largest displacement area of the 2011 Tohoku-Oki earthquake. Science 339 (6120), 687–690. http://dx.doi.org/10.1126/science.1229379.

56. Lourenҫo P.B., Milani G., Tralli A., Zucchini A., 2007. Analysis of masonry structures: review of and recent trends in homogenization techniques. Canadian Journal of Civil Engineering 34 (11), 1443–1457. http://dx.doi.org/10.1139/L07-097.

57. Love A.E.H., 1927. A Treatise on the Mathematical Theory of Elasticity. Fourth edition. Cambridge University Press, Cambridge, 643 p. [Русский перевод: Ляв А. Математическая теория упругости (перевод с 4-го английского издания). М.–Л.: ОНТИ НКТП СССР, 1935. 674 с.].

58. Luk’yanov A.V., 2002. Some features of the modern tectonophysics. In: Tectonophysics today (to M.V. Gzovsky Jubilee). UIPE RAS, Moscow, p. 22–46 (in Russian) [Лукьянов А.В. Некоторые особенности современной тектонофизики // Тектонофизика сегодня (к юбилею М.В. Гзовского). М.: ОИФЗ РАН, 2002. С. 22–46].

59. Lurie S.Ya., 1935. Theory of Infinitesimals Used by Ancient Atomists. Publishing House of the USSR Acad. Sci., Moscow, Leningrad, 199 p. (in Russian) [Лурье С.Я. Теория бесконечно малых у древних атомистов. М.–Л.: Изд-во АН СССР, 1935. 199 с.].

60. Makarov P.V., Smolin I.Yu., Stefanov Yu.P., Kuznetsov P.V., Trubitsyn A.A., Trubitsyna N.V., Voroshilov S.P., Voroshilov Ya.S., 2007. Nonlinear Geomechanics of Geomaterials and Geomedia. Geo, Novosibirsk, 235 p. (in Russian) [Макаров П.В., Смолин И.Ю., Стефанов Ю.П., Кузнецов П.В., Трубицын А.А., Трубицына Н.В., Ворошилов С.П., Ворошилов Я.С. Нелинейная геомеханика геоматериалов и геосред. Новосибирск: Гео, 2007. 235 с.].

61. Marchetti M.C., Joanny J.F., Ramaswamy S., Liverpool T.B., Prost J., Rao M., Simha R.A., 2013. Hydrodynamics of soft active matter. Reviews of Modern Physics 85 (3), 1143–1189. http://dx.doi.org/10.1103/RevModPhys.85.1143.

62. Marrett R., Peacock D.C., 1999. Strain and stress. Journal of Structural Geology 21 (8), 1057–1063. http://dx.doi.org/10.1016/S0191-8141(99)00020-6.

63. Masiani R., Trovalusci P., 1996. Cosserat and Cauchy materials as continuum models of brick masonry. Meccanica 31 (4), 421–432. http://dx.doi.org/10.1007/BF00429930.

64. Maugin G.A., Metrikine A.V. (Eds.), 2010. Mechanics of Generalized Continua. One Hundred Years After the Cosserats. Advances in Mechanics and Mathematics, vol. 21. Springer, New York, 337 p.

65. Maxwell S.C., Rutledge J., Jones R., Fehler M., 2010. Petroleum reservoir characterization using downhole microseismic monitoring. Geophysics 75 (5), 75A129–75A137. http://dx.doi.org/10.1190/1.3477966.

66. Mikhailov G.K., 2007. Leonhard Euler (the 300th birthday). Mekhanika Tverdogo Tela (Donetsk) 37, 3–14 (in Russian) [Михайлов Г.К. Леонард Эйлер (к 300-летию со дня рождения) // Механика твердого тела (Донецк). 2007. № 37. С. 3–14].

67. Mora X., 2014. Quotations on simplicity, falsifiability, the general modelling nature of mathematics, and mathematical beauty. Available from: http://mat.uab.cat/~xmora/articles/qs.pdf (last accessed June 27, 2016)

68. Mukhamediev S.A., 1990. Destruction Processes in the Earth's Lithosphere. Publishing House of IPE, the USSR Acad. Sci., Moscow, 204 p. (in Russian) [Мухамедиев Ш.А. Процессы разрушения в литосфере Земли. М.: Изд-во ИФЗ АН СССР, 1990. 204 с.].

69. Mukhamediev S.A., 1991. Retrieving field of stress tensor in crustal blocks. Izvestiya AN SSSR, seriya Fizika Zemli (Izvestiya, Physics of the Solid Earth) (5), 29–38 (in Russian) [Мухамедиев Ш.А. К проблеме восстановления поля тензора напряжений в блоках земной коры // Известия АН СССР, серия Физика Земли. 1991. № 5. С. 29–38].

70. Mukhamediev S.A., 1993. Reconstruction of tectonic stresses on the base of slip motions data: mathematical and physical constraints. Doklady AN 331 (4), 500–503 (in Russian) [Мухамедиев Ш.А. Реконструкция тектонических напряжений по разрывным сдвиговым смещениям: математические и физические ограничения // Доклады АН. 1993. Т. 331. № 4. С. 500–503].

71. Mukhamediev S.A., 2002. Global stresses in the Western Europe lithosphere and the collision forces in the AfricaEurasia convergence zone. Russian Journal of Earth Sciences 4 (1), 1–17. http://dx.doi.org/10.2205/2002ES000083.

72. Mukhamediev S.A., 2014. Refraction of the principal stress trajectories and the stress jumps on faults and contact surfaces: Part 1. Non-constrained regular trajectories. Izvestiya, Physics of the Solid Earth 50 (5), 655–691. http://dx.doi.org/10.1134/S1069351314040132.

73. Mukhamediev S.A., 2015. What kind of information about stresses and rheology is supplied by fracture processes in the Earth’s crust? Doklady Earth Sciences 461 (1), 265–269. http://dx.doi.org/10.1134/S1028334X15010055.

74. Mukhamediev S.A., Brady B.H.G., 2002. On methods of the macro-stress determination by fault-slip inversions. In: A.V. Dyskin, X. Hu, E. Sahouryen (Eds.), Structural integrity and fracture. Bulkema Publishers, Lisse, The Netherlands, p. 277–281.

75. Mukhamediev S.A., Galybin A.N., 2004. Solution of a plane elastic problem with given trajectories of the principal stresses. Doklady Physics 49 (5), 311–314. http://dx.doi.org/10.1134/1.1763623.

76. Mukhamediev S.A., Galybin A.N., 2007. Determination of stresses from the stress trajectory pattern in a plane elastic domain. Mathematics and Mechanics of Solids 12 (1), 75–106. http://dx.doi.org/10.1177/1081286506067093.

77. Mukhamediev S.A., Grachev A.F., 2000. Jointing of rocks and estimation of in situ stresses in exposures affected by explosions. Izvestiya, Physics of the Solid Earth 36 (2), 129–137.

78. Mukhamediev S.A., Kuzikov S.I., Zubovich A.V., 2011. Features of horizontal deformation velocity patterns and rotation in the Central Tien Shan from GPS measurement. In: Modern problems of geodynamics and geoecology of intracontinental orogens. Abstracts of the 5th International Symposium (Bishkek, 19–24 June 2011). RS RAS, Bishkek. Vol. 2, p. 60–63 (in Russian) [Мухамедиев Ш.А., Кузиков С.И., Зубович А.В. Особенности распределения скорости горизонтальных деформаций и вращений на территории Центрального Тянь-Шаня по данным GPS-измерений // Современные проблемы геодинамики и геоэкологии внутриконтинентальных орогенов: Тезисы докладов 5-го Международного симпозиума (г. Бишкек, 19–24 июня 2011 г.). Бишкек: НС РАН, 2011. Т. 2. С. 60–63].

79. Mukhamediev S.A., Nikitin L.V., Yunga S.L., 1976. Application of the modified method of local variations to problems of nonlinear fracture mechanics // Izvestia AN SSSR. Solid Mechanics Series 1, 76–83 (in Russian) [Мухамедиев Ш.А., Никитин Л.В., Юнга С.Л. Применение модифицированного метода локальных вариаций к задачам нелинейной механики разрушения // Известия АН СССР, серия Механика твердого тела. 1976. № 1. С. 76–83].

80. Mukhamediev Sh.A., Ryzhak E.I., Sinyukhina S.V., 2016. Stability of a two-layer system of inhomogeneous heavy barotropic fluids. Journal of Applied Mathematics and Mechanics (in press, available online 5 August 2016). http://dx.doi.org/10.1016/j.jappmathmech.2016.07.005.

81. Mukhamediev S.A., Ul’kin D.A., 2011. Formation of systems of incompact bands parallel to the compression axis in the unconsolidated sedimentary rocks: A model. Izvestiya, Physics of the Solid Earth 47 (10), 886–901. http://dx.doi.org/10.1134/S1069351311100089.

82. Mukhamediev S.A., Ul'kin D.A., 2014. Micromechanics of discontinuities and high porosity bands formation in the unconsolidated sedimentary rocks. Key Engineering Materials 592–593, 133–136. http://dx.doi.org/10.4028/www.scientific.net/KEM.592-593.133.

83. Mukhamediev S.A., Zubovich A.V., Kuzikov S.I., 2006. Identification of crustal blocks based on GPS data. Doklady Earth Sciences 408 (1), 678–681. http://dx.doi.org/10.1134/S1028334X06040386.

84. Nemat-Nasser S., Hori M., 1993. Micromechanics: Overall Properties of Heterogeneous Materials. Elsevier, Amsterdam, 687 p.

85. Nikitin L.V., Ryzhak E.I., 1977. Regularities in destruction of rocks with internal friction and dilatancy. Izvestiya AN SSSR, seriya Fizika Zemli (Izvestiya, Physics of the Solid Earth) (5), 22–37 (in Russian) [Никитин Л.В., Рыжак Е.И. Закономерности разрушения горной породы с внутренним трением и дилатансией // Известия АН СССР, серия Физика Земли. 1977. № 5. С. 22–37].

86. Nikolaevsky V.N., 1996. Geomechanics and Fluid Dynamics. Nedra, Moscow, 447 p. (in Russian) [Николаевский В.Н. Геомеханика и флюидодинамика. М.: Недра, 1996. 447 с.].

87. Noether E., 1918. Invariante variationsprobleme. In: Nachrichten von der Königliche Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse B. 2, s. 235–257 (in German) [Русский перевод: Нетер Э. Инвариантные вариационные задачи // Вариационные принципы механики (сборник статей классиков науки) / Ред. Л.С. Полак. М.: Физматлит, 1959. С. 611–630].

88. Norris J.Q., Turcotte D.L., Rundle J.B., 2015a. A damage model for fracking. International Journal of Damage Mechanics 24 (8), 1227–1238. http://dx.doi.org/10.1177/1056789515572927.

89. Norris J.Q., Turcotte D.L., Rundle J.B., 2015b. Anisotropy in fracking: a percolation model for observed microseismicity. Pure and Applied Geophysics 172 (1), 7–21. http://dx.doi.org/10.1007/s00024-014-0921-9.

90. Nowacki W., 1970. Teoria Sprężystości. Państwowe Wydawnictwo Naukowe, Warszawa, 769 s. (in Polish) [Русский перевод: Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.].

91. Parton V.Z., 1990. Fracture Mechanics: from Theory to Practice. Nauka, Moscow, 240 p. (in Russian) [Партон В.3. Механика разрушения: от теории к практике. М.: Наука, 1990. 240 с.].

92. Peive A.V., 1961. Tectonics and magmatism. Izvestiya AN SSSR, seriya Geologicheskaya (3), 36–54 (in Russian) [Пейве А.В. Тектоника и магматизм // Известия АН СССР, серия геологическая. 1961. № 3. С. 36–54].

93. Pelà L., Cervera M., Roca P., 2011. Continuum damage model for orthotropic materials: application to masonry. Computer Methods in Applied Mechanics and Engineering 200 (9), 917–930. http://dx.doi.org/10.1016/j.cma.2010.11.010.

94. Pollard D.D., Aydin A., 1988. Progress in understanding jointing over the past century. Geological Society of America Bulletin 100 (8), 1181–1204. http://dx.doi.org/10.1130/0016-7606(1988)100<1181:PIUJOT>2.3.CO;2.

95. Ponomarev V.S., 2008. Energy Capacity of Geologic Medium. Nauka, Moscow, 379 p. (in Russian) [Пономарев В.С. Энергонасыщенность геологической среды. М.: Наука, 2008. 379 с.].

96. Ponomarev V.S., 2011. Problems of studying an energetically active geologic medium. Geotectonics 45 (2), 157–165. http://dx.doi.org/10.1134/S001685211102004X.

97. Radin C., 2008. Random close packing of granular matter. Journal of Statistical Physics 131 (4), 567–573. http://dx.doi.org/10.1007/s10955-008-9523-1.

98. Rebetsky Y.L., 2013. On an missing energy source of tectonic processes. Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences (1), 132–137 (in Russian) [Ребецкий Ю.Л. Об одном неучтенном источнике энергии тектонических процессов // Вестник КРАУНЦ. Науки о Земле. 2013. № 1. С. 132–137].

99. Rebetsky Y.L., 2014. Instability of layered media under gravity stress. Russian Geology and Geophysics 55 (9), 1146–1152. http://dx.doi.org/10.1016/j.rgg.2014.08.010.

100. Revuzhenko A.F., Stazhevskii S.B., Shemyakin E.I., 1974. Mechanism of deformation of a granular material under high shear. Journal of Mining Science 10 (3), 374–377. http://dx.doi.org/10.1007/BF02509483.

101. Richard P., Nicodemi M., Delannay R., Ribiere P., Bideau D., 2005. Slow relaxation and compaction of granular systems. Nature Materials 4 (2), 121–128. http://dx.doi.org/10.1038/nmat1300.

102. Rodionov V.N., Sizov I.A., Kocharyan G.G., 1989. On modeling of natural objects in geomechanics. In: M.A. Sadovsky (Ed.), Discrete properties of geophysical medium. Nauka, Moscow, p. 14−18 (in Russian) [Родионов В.Н., Сизов И.А., Кочарян Г.Г. О моделировании природных объектов в геомеханике // Дискретные свойства геофизической среды / Ред. М.А. Садовский. М.: Наука, 1989. С. 14−18].

103. Rudnicki J.W., Rice J.R., 1975. Conditions for the localization of deformation in pressure-sensitive dilatant materials. Journal of the Mechanics and Physics of Solids 23 (6), 371–394. http://dx.doi.org/10.1016/0022-5096(75)90001-0.

104. Ryzhak E.I., 2011. Coordinateless Tensor Calculations for Continuum Mechanics. MIPT, Moscow, 170 p. (in Russian) [Рыжак Е.И. Бескоординатное тензорное исчисление для механики сплошных сред. М.: МФТИ, 2011. 170 с.].

105. Sadovsky M.A., 1989. On significance and meaning of discreteness in geophysics. In: M.A. Sadovsky (Ed.), Discrete Properties of Geophysical Medium. Nauka, Moscow, p. 5–14 (in Russian) [Садовский М.А. О значении и смысле дискретности в геофизике // Дискретные свойства геофизической среды / Ред. М.А. Садовский. М.: Наука, 1989. С. 5–14].

106. Samko S.G., Kilbas A.A., Marichev O.I., 1987. Integrals and Derivatives of Fractional Order, and Some Applications. Nauka i Tekhnika, Minsk, 688 p. (in Russian) [Самко С.Г., Килбас А.А., Маричев О.И. Интегралы и производные дробного порядка и некоторые их приложения. Минск: Наука и техника, 1987. 688 с.].

107. Seminsky K.Z., Kozhevnikov N.O., Cheremnykh A.V., Pospeeva E.V., Bobrov A.A., Olenchenko V.V., Tugarina M.A., Potapov V.V., Zaripov R.M., Cheremnykh A.S., 2013. Interblock zones in the crust of the southern regions of East Siberia: tectonophysical interpretation of geological and geophysical data. Geodynamics & Tectonophysics 4 (3), 203–278 (in Russian) [Семинский К.Ж., Кожевников Н.О., Черемных А.В., Поспеева Е.В., Бобров А.А., Оленченко В.В., Тугарина М.А., Потапов В.В., Зарипов Р.М., Черемных А.С. Межблоковые зоны в земной коре юга Восточной Сибири: тектонофизическая интерпретация геолого-геофизических данных // Геодинамика и тектонофизика. 2013. Т. 4. № 3. С. 203–278]. http://dx.doi.org/10.5800/GT-2013-4-3-0099.

108. Sherman S.I., 2012. Destruction of the lithosphere: faultblock divisibility and its tectonophysical regularities. Geodynamics & Tectonophysics 3 (4), 315–344 (in Russian) [Шерман С.И. Деструкция литосферы: разломно-блоковая делимость и ее тектонофизические закономерности // Геодинамика и тектонофизика. 2012. Т. 3. № 4. С. 315–344]. http://dx.doi.org/10.5800/GT-2012-3-4-0077.

109. Sherman S.I., 2015. Genetic sources and tectonophysical regularities of divisibility of the lithosphere into blocks of various ranks at different stages of its formation: tectonophysical analysis. Geodynamics & Tectonophysics 6 (3), 387–408. http://dx.doi.org/10.5800/GT-2015-6-3-0187.

110. Silling S.A., Lehoucq R.B., 2008. Convergence of peridynamics to classical elasticity theory. Journal of Elasticity 93 (1), 13–37. http://dx.doi.org/10.1007/s10659-008-9163-3.

111. Silling S.A., Lehoucq R.B., 2010. Peridynamic theory of solid mechanics. In: H. Aref, E. van der Giessen (Eds.), Advances in applied mechanics, vol. 44, p. 73–168. http://dx.doi.org/10.1016/S0065-2156(10)44002-8.

112. Sobolev G.A., Ponomarev A.V., 2003. Physics of Earthquakes and Precursors. Nauka, Moscow, 270 p. (in Russian) [Соболев Г.А., Пономарев А.В. Физика землетрясений и предвестники. М.: Наука, 2003. 270 с.].

113. Stoyanov S.S., 1977. Mechanism of Formation of Fracture Zones. Nedra, Moscow. 144 p. (in Russian) [Стоянов С.С. Механизм формирования разрывных зон. М.: Недра, 1977. 144 с.].

114. Strakhov V.N., 2007. Change of epochs in Earth sciences. Russian Journal of Earth Sciences 9 (1), ES1001. http://dx.doi.org/10.2205/2007ES000217.

115. Subramaniyan A.K., Sun C.T., 2008. Continuum interpretation of virial stress in molecular simulations. International Journal of Solids and Structures 45 (14), 4340–4346. http://dx.doi.org/10.1016/j.ijsolstr.2008.03.016.

116. Suvorov S.G., Shteinman R.Ya., 1950. For the consistently materialistic interpretation of the foundations of mechanics. Uspekhi Fizicheskikh Nauk 40 (3), 407–439 (in Russian) [Суворов С.Г., Штейнман Р.Я. За последовательноматериалистическую трактовку основ механики // Успехи физических наук. 1950. Т. 40. № 3. С. 407–439].

117. Takatori S.C., Brady J.F., 2016. Forces, stresses and the (thermo?) dynamics of active matter. Current Opinion in Colloid & Interface Science 21, 24–33. http://dx.doi.org/10.1016/j.cocis.2015.12.003.

118. Tarasov V.E., 2015. Elasticity of fractal materials using the continuum model with non-integer dimensional space. Comptes Rendus Mécanique 343 (1), 57–73. http://dx.doi.org/10.1016/j.crme.2014.09.006.

119. Thatcher W., 2003. GPS constraints on the kinematics of continental deformation. International Geology Review 45 (3), 191–212. http://dx.doi.org/10.2747/0020-6814.45.3.191.

120. Thatcher W., 2007. Microplate model for the present-day deformation of Tibet. Journal of Geophysical Research 112 (B1), B01401. http://dx.doi.org/10.1029/2005JB004244.

121. Toner J., Tu Y., Ramaswamy S., 2005. Hydrodynamics and phases of flocks. Annals of Physics 318 (1), 170–244. http://dx.doi.org/10.1016/j.aop.2005.04.011.

122. Torabi A., Berg S.S., 2011. Scaling of fault attributes: A review. Marine and Petroleum Geology 28 (8), 1444–1460. http://dx.doi.org/10.1016/j.marpetgeo.2011.04.003.

123. Truesdell C., 1972. A First Course in Rational Continuum Mechanics. The Johns Hopkins University Press, Baltimore, Maryland [Русский перевод: Трусделл К. Первоначальный курс рациональной механики сплошных сред. М.: Мир, 1975. 592 с.].

124. Turcotte D.L., Moores E.M., Rundle J.B., 2014. Super fracking. Physics Today 67 (8), 34–39. http://dx.doi.org/10.1063/PT.3.2480.

125. Turing A.M., 1952. The chemical basis of morphogenesis. Philosophical Transactions of the Royal Society of London B: Biological Sciences 237 (641), 37–72. http://dx.doi.org/10.1098/rstb.1952.0012.

126. Vikulin A.V., 2008. Physics of the Earth and Geodynamics. Textbook for geophysical courses at universities. Vitus Bering Kamchatka State University Publishing House, Petropavlovsk-Kamchatsky, 463 p. (in Russian) [Викулин А.В. Физика Земли и геодинамика: Учебное пособие для геофизических специальностей вузов. Петропавловск-Камчатский: Изд-во КамГУ им. Витуса Беринга, 2008. 463 с.].

127. Vikulin A.V., 2013. Nonlinearity–fractality or rheidity–energy saturation: which categories are closer for geology? (Review on the article of N.V. Koronovskii, A.A. Naimark «Methods of dynamic geology at the critical turn of applicability»). Bulletin of Kamchatka Regional Association “Educational-Scientific Center”. Earth Sciences (1), 163–168 (in Russian) [Викулин А.В. Нелинейность-фрактальность или реидность-энергонасыщенность: какие категории ближе геологии? (Отзыв на статью Н.В. Короновского, А.А. Наймарка «Методы динамической геологии на критическом рубеже применимости») // Вестник КРАУНЦ, серия Науки о Земле. 2013. № 1. С. 163–168].

128. Vikulin A.V., Ivanchin A.G., 2013. Modern concept of block hierarchy in the structure of geomedium and its implications in geosciences. Journal of Mining Science 49 (3), 395–408. http://dx.doi.org/10.1134/S1062739149030076.

129. Vikulin A.V., Makhmudov K.F., Ivanchin A.G., Gerus A.I., Dolgaya A.A., 2016. On wave and rheidity properties of the Earth’s crust. Physics of the Solid State 58 (3), 561–571. http://dx.doi.org/10.1134/S1063783416030306.

130. Wallace R.E., 1951. Geometry of shearing stress and relation to faulting. The Journal of Geology 59 (2), 118–130. http://dx.doi.org/10.1086/625831.

131. Wells D.L., Coppersmith K.J., 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002.

132. Wu H.Y., Ma K.F., Zoback M., Boness N., Ito H., Hung J.H., Hickman S., 2007. Stress orientations of Taiwan Chelungpu-Fault Drilling Project (TCDP) hole-A as observed from geophysical logs. Geophysical Research Letters 34 (1), L01303. http://dx.doi.org/10.1029/2006GL028050.

133. Yew C.H., Weng X., 2015. Mechanics of Hydraulic Fracturing. Second edition. Gulf Professional Publishing, Oxford, UK, 234 p.

134. Yuen Y.P., Kuang J.S., 2013. Fourier-based incremental homogenisation of coupled unilateral damage–plasticity model for masonry structures. International Journal of Solids and Structures 50 (20), 3361–3374. http://dx.doi.org/10.1016/j.ijsolstr.2013.06.001.

135. Zamponi F., 2008. Packings close and loose. Nature 453 (7195), 606–607. http://dx.doi.org/10.1038/453606a.

136. Zavyalov A.D., 2005. From the kinetic theory of strength and fracture concentration criterion to the seismogenic fracture density and earthquake forecasting. Physics of the Solid State 47 (6), 1034–1041. http://dx.doi.org/10.1134/1.1946852.

137. Zhilin P.A., 2003. Theoretical Mechanics. Fundamental Laws of Mechanics. Publishing House of the Polytechnic University, St. Petersburg, 340 p. (in Russian) [Жилин П.А. Теоретическая механика. Фундаментальные законы механики. СПб.: Изд-во Политехнического университета, 2003. 340 с.].

138. Zhilin P.A., 2006. Applied Mechanics. Fundamentals of the Theory of Shells. Textbook. Publishing House of the Polytechnic University, St. Petersburg. 167 p. (in Russian) [Жилин П.А. Прикладная механика. Основы теории оболочек: Учебное пособие. СПб.: Изд-во Политехнического университета, 2006. 167 с.].

139. Zhou M., 2003. A new look at the atomic level virial stress: on continuum-molecular system equivalence. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 459 (2037), 2347–2392. http://dx.doi.org/10.1098/rspa.2003.1127.

140. Zhu H.P., Zhou Z.Y., Yang R.Y., Yu A.B., 2008. Discrete particle simulation of particulate systems: a review of major applications and findings. Chemical Engineering Science 63 (23), 5728–5770. http://dx.doi.org/10.1016/j.ces.2008.08.006.

141. Zhurkov S.N., Kuksenko V.S., Petrov V.A., Saveliev V.N., Sultonov U., 1977. On forecasting of rock destruction. Izvestiya AN SSSR, seriya Fizika Zemli (Izvestiya, Physics of the Solid Earth) (6), 11–18 (in Russian) [Журков С.Н., Куксенко В.С., Петров В.А., Савельев В.Н., Султонов У. О прогнозировании разрушения горных пород // Известия АН СССР, серия Физика Земли. 1977. № 6. С. 11–18].

142. Zubov V.P., 1965. Development of Atomistic Concepts before the Beginning of the 21st Century. Nauka, Moscow. 372 p. (in Russian) [Зубов В.П. Развитие атомистических представлений до начала XIX века. М.: Наука, 1965. 372 с.].

143. Zubovich A.V., Mukhamediev S.A., 2010. A method of superimposed triangulations for calculation of velocity gradient of horizontal movements: application to the Central Asian GPS network. Geodynamics & Tectonophysics 1 (2), 169–185 (in Russian) [Зубович А.В., Мухамедиев Ш.А. Метод наложенных триангуляций для вычисления градиента скорости горизонтальных движений: приложение к Центрально-Азиатской GPS-сети // Геодинамика и тектонофизика. 2010. Т. 1. № 2. С. 169–185]. http://dx.doi.org/10.5800/GT-2010-1-2-0013.


Review

For citations:


Mukhamediev Sh.A. ON DISCRETE STRUCTURE OF GEOLOGIC MEDIUM AND CONTINUAL APPROACH TO MODELING ITS MOVEMENTS. Geodynamics & Tectonophysics. 2016;7(3):347-381. https://doi.org/10.5800/GT-2016-7-3-0213

Views: 1808


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)