Preview

Geodynamics & Tectonophysics

Advanced search

THE EARLY PALEOZOIC BASITE MAGMATISM IN THE NORTHEASTERN SIBERIAN CRATON

https://doi.org/10.5800/GT-2016-7-2-0204

Abstract

The Early Cambrian tectonomagmatic activation is manifested in the northeastern passive margin of the Siberian Craton within the area of the Olenek uplift, as well as in the Kharaulakh segment of the Verkhoyansk fold‐ thrust belt that was thrusted onto the craton in the Mesozoic. In the Olenek uplift, igneous rocks occur as basite di‐ atremes, small basalt covers, dolerite dykes and sills intruded into the overlying Upper Vendian carbonate sediments. Stratiform bodies of explosive breccias are present in basal sandstones at the bottom of the Lower Cambrian sediment section. According to the zircon‐based U‐Pb datings [Bowring et al., 1993], the age of explosive basite breccias samples from the Olenek uplift (543.9±0.24 Ma) correlates with the age of potash‐rhyolites (534.6±0.5 Ma) from the basal Lower Cambrian conglomerates in the Kharaulakh uplift section. The geodynamic evolution of the northeastern mar‐ gin of the Siberian craton at the end of the Vendian and the beginning of the Cambrian periods is reflected not only in the magmatism, but also in the thicknesses and facial characteristics of the correlating sediments of the regional pas‐ sive sea basins [Pelechaty et al., 1996]. The northern and eastern margins of the craton were subject to progressive uplifting at the end of the Vendian, which resulted in dewatering and paleokarsting. Uplifting was associated with the formation of siliceous clastic shelf sediments in the southern margin of the basin and the explosive and intrusive basite magmatic activations in the Olenek uplift and rhyolite bimodal‐basite magmatic activation in the Kharaulakh uplift. The observed Vendian‐Cambrian stratigraphic relations and manifestations of the basite magmatism suggest that at the northeastern margin of the craton, the lithosphere was subject to stretching. The assumed rift volcanic‐ sedimentary associations are thin and represent the southern, the most remote part of the shoulder of the rift deve‐ loped (in present‐day coordinates) along the northern margin of the Siberian Craton. The chemical specificity of the Lower Cambrian basites and their mantle sources, the bimodal rhyolite‐basalt magmatism, and the Vendian‐Cambrian sedimentation history provide sufficient arguments to consider the Early Paleozoic rifting and the associated magma‐ tic activation as consequences of the plume–lithosphere interaction in the northeastern Siberian Craton. The paleore‐ constructions [Sears, 2012; Khudoley et al., 2013] suggest that the main rifting events occurred due to the lithosphere breakup through the junction zone of the Siberian and North American cratons which existed in the Early Cambrian. It is also assumed that the breakup was accompanied by the formation of a large igneous province which relics are pre‐ sent in the basin complex of the Canadian Cordillera in North America, as well as in the Olenek and Kharaulakh uplifts. The Early Paleozoic rifting and magmatism may reflect the final phase of the disintegration of the Rodinia superconti‐ nent fragments.

About the Authors

A. I. Kiselev
Institute of the Earth’s Crust, Siberian Branch of RAS
Russian Federation

Doctor of Geology and Mineralogy, Lead Researcher,

128 Lermontov street, Irkutsk 664033



B. B. Kochnev
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS
Russian Federation

Candidate of Geology and Mineralogy, Senior Researcher,

3 Acad. Koptyug prosp., Novosibirsk 630090



V. V. Yarmolyuk
Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry of RAS
Russian Federation

Doctor of Geology and Mineralogy, Academician of RAS, Head of Laboratory,

35 Staromonetnyi per., Moscow 109017



V. I. Rogov
A.A. Trofimuk Institute of Petroleum Geology and Geophysics, Siberian Branch of RAS
Russian Federation

Junior Researcher,

3 Acad. Koptyug prosp., Novosibirsk 630090



K. N. Egorov
Institute of the Earth’s Crust, Siberian Branch of RAS, Irkutsk
Russian Federation

Candidate of Geology and Mineralogy, Head of Laboratory,

128 Lermontov street, Irkutsk 664033



References

1. Alekseev S.V., 2000. Cryogenesis of Groundwaters and Rocks (Case of the Daldyno-Alakit Region of West Yakutia). Nauka, Novosibirsk, 119 p. (in Russian) [Алексеев С.В. Криогенез подземных вод и горных пород (на примере Далдыно-Алакитского района Западной Якутии). Новосибирск: Наука, 2000, 119 с.].

2. Bowring S.A., Grotzinger J.P., Isachsen C.E., Knoll A.H., Pelechaty Sh.M., Kolosov P., 1993. Calibrating rates of Early Cambrian evolution. Science 261 (5126), 1293–1298. http://dx.doi.org/10.1126/science.11539488.

3. Brakhfogel F.F., 1984. Geological Aspects of Kimberlite Magmatism of the Northeastern Siberian Platform. Yakutsk Branch of the USSR Acad. Sci., Yakutsk, 128 p. (in Russian) [Брахфогель Ф.Ф. Геологические аспекты кимберлитового магматизма северо-востока Сибирской платформы. Якутск: Якутский филиал СО РАН СССР, 1984. 128 с.].

4. Deer W.A., Howie R.A., Zussman J., 1966. An Introduction to the Rock-Forming Minerals, vol. 4. Mir, Moscow, 476 p. (in Russian) [Дир У.А., Хауи Р.А., Зусман Дж. Породообразующие минералы. М.: Мир, 1966. Т. 4. 476 с.].

5. Gladkochub D.P., Donskaya T.V., Ivanov A.V., Ernst R., Mazukabzov A.M., Pisarevsky S.A., Ukhova N.A., 2010a. Phanerozoic mafic magmatism in the southern Siberian craton: geodynamic implications. Russian Geology and Geophysics 51 (9), 952–964. http://dx.doi.org/10.1016/j.rgg.2010.08.005.

6. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., Ponomarchuk V.A., 2007. Signature of Precambrian extension events in the southern Siberian craton. Russian Geology and Geophysics 48 (1), 17–31. http://dx.doi.org/10.1016/j.rgg.2006.12.001.

7. Gladkochub D.P., Pisarevsky S.A., Donskaya T.V., Ernst R.E., Wingate M.T.D., Söderlund U., Mazukabsov A.M., Sklyarov E.V., Hamilton M.A., Hanes J.A., 2010b. Proterozoic magmatism in Siberian craton: An overviev and implications for paleocontinental reconstruction. Precambrian Researches 183 (3), 660–668. http://dx.doi.org/10.1016/j.precamres.2010.02.023.

8. Hughes C.J., 1988. Petrology of Igneous Rocks. Nedra, Moscow, 320 p. (in Russian) [Хьюджес Ч. Петрология изверженных пород. М.: Недра, 1988. 320 с.].

9. Khudoley A.K., Prokopiev A.V., Chamberlain K.R., Ernst R.E., Jowitt S.M., Malyshev S.V., Zaitsev A.I., Kropachev A.P., Koroleva O.V., 2013. Early Paleozoic mafic magmatic events on the eastern margin of the Siberian Craton. Lithos 174, 45–56. http://dx.doi.org/10.1016/j.lithos.2012.08.008.

10. Kiselev A.I., Ernst R.E., Yarmolyuk V.V., Egorov K.N., 2012a. Radiated rifts and dyke swarms of the middle Paleozoic Yakutsk plume of eastern Siberian craton. Journal of Asian Earth Sciences 45, 1–16. http://dx.doi.org/10.1016/j.jseaes.2011.09.004.

11. Kiselev A.I., Yarmolyuk V.V., Egorov K.N., 2009. Potassium basalts and picrobasalts from the devonian kimberlite fields of Western Yakutia, Russia, and their relations to kimberlite magmatism. Geology of Ore Deposits 51 (1), 33–50. http://dx.doi.org/10.1134/S1075701509010036.

12. Kiselev A.I., Yarmolyuk V.V., Ivanov A.V., Egorov K.N., 2014. Middle Paleozoic basaltic and kimberlitic magmatism in the northwestern shoulder of the Vilyui Rift, Siberia: relations in space and time. Russian Geology and Geophysics 55 (2), 144–152. http://dx.doi.org/10.1016/j.rgg.2014.01.003.

13. Kiselev A.I., Yarmolyuk V.V., Kolodeznikov I.I., Struchkov K.K., Egorov K.N., 2012b. The northeastern boundary of the Siberian Craton and its formation peculiarities (derived from occurrences of Early Cambrian and Devonian intraplate magmatism). Doklady Earth Sciences 447 (1), 1252–1258. http://dx.doi.org/10.1134/S1028334X12110098.

14. Kiselev A.I., Yegorov K.N., Chernyshov R.A., Chashchukhin A.V., Yanygin Yu.T., 2004. The nature of basic explosive breccias within the Nakyn kimberlitic field (Yakutian diamondiferous province). Tikhookeanskaya Geologiya (Russian Journal of Pacific Geology) 23 (1), 97–104 (in Russian) [Киселев А.И., Егоров К.Н., Чернышов Р.А., Чащухин А.В., Яныгин Ю.Т. Проявления флюидно-взрывной дезинтеграции базитов в Накынском кимберлитовом поле (Якутская алмазоносная провинция) // Тихоокеанская геология. 2004. Т. 23. № 1. С. 97–104].

15. Kuzmichev A.B., Sklyarov E.V., Barash I.G., 2005. Pillow basalts and blueschists on Bol’shoi Lyakhovsky Island (the New Siberian Islands) – fragments of the South Anyui oceanic lithosphere. Geologiya i Geofizika (Russian Geology and Geophysics) 46 (12), 1367–1381.

16. Leonov B.N., Gogina N.I., 1968. Early Paleozoic volcanism of the northeastern Siberian platform. Sovetskaya Geologiya (Soviet Geology) (4), 94–102 (in Russian) [Леонов Б.Н., Гогина Н.И. Раннепалеозойский вулканизм на северо-востоке Сибирской платформы // Советская геология. 1968. № 4. C. 94–102].

17. Oleinikov B.V., Mashchak M.S., Kolodeznikov I.I., Kopylova A.G., Savinov V.T., Tomshin M.D., Tulasynov B.N., 1983. Petrology and Geochemistry of the Late Precambrian Intrusive Basites of the Siberian Platform. Nauka, Novosibirsk, 207 p. (in Russian) [Олейников Б.В., Мащак М.С., Колодезников И.И., Копылова А.Г., Савинов В.Т., Томшин М.Д., Туласынов Б.Н. Петрология и геохимия позднедокембрийских интрузивных базитов Сибирской платформы. Новосибирск: Наука, 1983. 207 с.].

18. Pearce J.A., 1983. The role of subcontinental lithosphere in magma genesis at distructive plate margins. In: C.J. Hawkesworth, H.J. Norry (Eds.), Continental basalt and mantle xenolith. Nantwich, Shiwa, p. 230–249.

19. Pelechaty S.M., Grotzinger J.P., Kashirtsev V.A., Zhernovsky V.P., 1996. Chemostratigraphic and sequence stratigraphic constraints on Vendian-Cambrian basin dynamics, Northeast Siberian craton. The Journal of Geology 104 (5), 543–563.

20. Rogov V.I., Karlova G.A., Marusin V.V., Kochnev B.B., Nagovitsin K.E., Grazhdankin D.V., 2015. Duration of the first biozone in the Siberian hypostratotype of the Vendian. Russian Geology and Geophysics 56 (4), 573–583. http://dx.doi.org/10.1016/j.rgg.2015.03.016.

21. Rosen O.M., Manakov A.V., Zinchuk N.N., 2006. Siberian Craton: Formation and Diamond-Bearing Capacity. Nauchny Mir, Moscow, 212 p. (in Russian) [Розен О.М., Манаков А.В., Зинчук Н.Н. Сибирский кратон: формирование, алмазоносность. М.: Научный мир, 2006. 212 с.].

22. Sears J.W., 2012. Transforming Siberia along the Laurussian margin. Geology 40 (6), 535–538. http://dx.doi.org/10.1130/G32952.1.

23. Shpunt B.R., Shamshina E.A., 1989. Late Vendian potassium alkaline volcanic rocks of the Olenek Uplift (northeastern Siberian platform). Doklady AN SSSR 307 (3), 678–682 (in Russian) [Шпунт Б.Р., Шамшина Э.А. Поздневендские калиевые щелочные вулканиты Оленекского поднятия (северо-восток Сибирской платформы) // Доклады АН СССР. 1989. Т. 307. № 3. С. 678–682].

24. Shpunt B.R., Shapovalova I.G., Shamshina E.A., 1982. The Northern Siberian Platform in Late Precambrian. Nauka, Novosibirsk, 226 p. (in Russian) [Шпунт Б.Р., Шаповалова И.Г., Шамшина Э.А. Поздний докембрий севера Сибирской платформы. Новосибирск: Наука, 1982. 226 с.].

25. Sun S.S., McDonough W.F., 1989. Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. In: A.D. Saunders, M.J. Norry (Eds.), Magmatism in the ocean basins. Geological Society, London, Special Publications, vol. 42, p. 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.

26. Tomlinson K.Y., Condie K.C., 2001. Archean mantle plumes: evidence from greenstone belt geochemistry. In: R.E. Ernst, K.L. Buchan (Eds.), Mantle plumes: their identification through time. Geological Society of America Special Papers, vol. 352, p. 341–357. http://dx.doi.org/10.1130/0-8137-2352-3.341.

27. Vladykin N.V., Kotov A.B., Borisenko A.S., Yarmolyuk V.V., Pokhilenko N.P., Sal’nikova E.B., Travin A.V., Yakovleva S.Z., 2014. Age boundaries of formation of the Tomtor alkaline-ultramafic pluton: U-Pb and 40Ar/39Ar geochronological studies. Doklady Earth Sciences 454 (1), 7–11. http://dx.doi.org/10.1134/S1028334X14010140.

28. White W.M., Duncan R.A., 1996. Geochemistry and geochronology of the Society Island: new evidences for deep mantle recycling. In: A. Basu, S.R. Hart (Eds.), Earth Processes: Reading the Isotopic Code. AGU Geophysical Monograph Series, vol. 95, p. 183–206. http://dx.doi.org/10.1029/GM095p0183.

29. Winchester J.A., Floyd P.A., 1977. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical geology 20, 325–343. http://dx.doi.org/10.1016/0009-2541(77)90057-2.

30. Wingate M.T.D., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Konstantinov K.M., Mazukabsov A.M., Stanevich A.M., 2009. Geochronology and paleomagnetism of mafic igneous rock in the Olenek uplift, northern Siberia: Implications for Mesoproterozoic supercontinents and paleogeography. Precambrian Research 170 (3–4), 256–266. http://dx.doi.org/10.1016/j.precamres.2009.01.004.

31. Zhuravlev V.S., Sorokov D.S., 1954. The lithostratigraphic unit of the Cambrian deposits of the Olenek arched uplift. In: NIIGA Information Bulletin 43. Leningrad, p. 18–25 (in Russian) [Журавлев В.С., Сороков Д.С. Литологостратиграфическое подразделение кембрийских отложений Оленекского сводового поднятия // Информационный бюллетень НИИГА. Т. 43. Л., 1954. С. 18–25].


Review

For citations:


Kiselev A.I., Kochnev B.B., Yarmolyuk V.V., Rogov V.I., Egorov K.N. THE EARLY PALEOZOIC BASITE MAGMATISM IN THE NORTHEASTERN SIBERIAN CRATON. Geodynamics & Tectonophysics. 2016;7(2):233-250. https://doi.org/10.5800/GT-2016-7-2-0204

Views: 1362


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)