MULTIYEAR TRENDS IN THE TOTAL MOISTURE CONTENT OF THE TROPOSPHERE IN DIFFERENT-LATITUDE ZONES OF EASTERN SIBERIA
https://doi.org/10.5800/GT-2025-16-6-0869
EDN: GLMFJQ
Abstract
GPS measurements are an important tool for navigation and high-precision space geodesy. Of particular importance is the use of the GPS data for determining integrated water vapor (IWV) level within the lower neutral part of the atmosphere. Radiosonde (RS) data are also important for direct determination of the integrated water vapor. The values of the weighted mean temperature (Tm) in a vertical column are found from radiosonde launches in order to extract IWV values from GPS-derived total zenith tropospheric delay (ZTD) estimates. The total moisture content variability from 1999 to 2021 is considered based on the datasets of permanent GPS measurements, radiosondes and surface meteorology at IRKT (Irkutsk), YAKT (Yakutsk) and TIXI (Tiksi) observation points located in different-latitude zones.
The RS- and GPS-derived trends in moisture content were compared with the surface meteorological data-based model calculations. GPS measurements showed a good agreement with model calculations rather than with RS data. The tropospheric integrated water vapor tends to increase over the entire GPS observation period, and, despite a large latitudinal difference between the three observation points, there is a consolidated tendency at the level of 0.33±0.04 mm per decade.
About the Authors
M. G. DembelovRussian Federation
6 Sakhyanova St, UlanUde 670047, Republic of Buryatia
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
Yu. B. Bashkuev
Russian Federation
6 Sakhyanova St, UlanUde 670047, Republic of Buryatia
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
A. V. Lukhnev
Russian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
V. A. Sankov
Russian Federation
128 Lermontov St, Irkutsk 664033
Competing Interests:
The authors declare that they have no conflicts of interest relevant to this manuscript.
References
1. Abraham C., Goldblatt C., 2022. A Satellite Climatology of Relative Humidity Profiles and Outgoing Thermal Radiation over Earth’s Oceans. Journal of the Atmospheric Sciences 79 (9), 2243–2265. https://doi.org/10.1175/JAS-D-21-0270.1.
2. Bernet L., Brockmann E., von Clarmann T., Kämpfer N., Mahieu E., Matzler C., Stober G., Hocke K., 2020. Trends of Atmospheric Water Vapour in Switzerland from Ground-Based Radiometry, FTIR and GNSS Data. Atmospheric Chemistry and Physics 20 (19), 11223–11244. https://doi.org/10.5194/acp-2020-77.
3. Bevis M., Businger S., Herring T.A., Rocken C., Anthes R.A., Ware R.H., 1992. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System. Journal of Geophysical Research: Atmospheres 97 (D14), 15787–15801. https://doi.org/10.1029/92JD01517.
4. Chen B., Liu Zh., 2016. Global Water Vapor Variability and Trend from the Latest 36 Year (1979 to 2014) Data of ECMWF and NCEP Reanalyses, Radiosonde, GPS, and Microwave Satellite. Journal of Geophysical Research: Atmospheres 121 (19), 11442–11462. https://doi.org/10.1002/2016JD024917.
5. Davis J.L., Herring T.A., Shapiro I.I., Rogers A.E.E., Elgered G., 1985. Geodesy by Radio Interferometery: Effects of Atmospheric Modeling Errors on the Estimates on Baseline Lengths. Radio Science 20 (6), 1593–1607. https://doi.org/10.1029/RS020i006p01593.
6. Dembelov M., Bashkuev Y., 2022a. On the Long-Term Trend of Changes in Integrated Water Vapor Based on the Results of Continuous GPS Measurements at the Observation Point IRKM (Irkutsk). In: Proceedings of the IEEE 8th All-Russian Microwave Conference (November 23–25, 2022, Moscow). IEEE, p. 381–385. https://doi.org/10.1109/RMC55984.2022.10079427.
7. Dembelov M.G., Bashkuev Yu.B., 2022b. Estimation of the Tropospheric Moisture Content Derived from GPS Observations, Radio Sounding Data, and Measurements with a Water Vapor Radiometer. Atmospheric and Oceanic Optics 35 (4), 359–365. https://doi.org/10.1134/S1024856022040029.
8. Dembelov M.G., Bashkuev Yu.B., 2023a. Changes in the Total Moisture Content of the Troposphere According to the Data of GPS Measurements and Radiosondes. In: Proceedings of the 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. SPIE, 1278056. https://doi.org/10.1117/12.2689777.
9. Dembelov M.G., Bashkuev Yu.B., 2023b. Evaluation of the Model of Weighted Mean Temperature in the Troposphere over Irkutsk and Yakutsk Cities. In: Proceedings of the 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. SPIE, 1278061. https://doi.org/10.1117/12.2690781.
10. Dembelov M.G., Bashkuev Yu.B., Ayurov D.B., 2023. Applied Digital Data Monitoring Platform for Ulaz (Ulan-Ude) and Badg (Badary) Continuous High-Precision GPS Measurements. In: Proceedings of the 29th International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics. SPIE, 1278061. https://doi.org/10.1117/12.2690974.
11. Durre I., Williams C.N., Yin X., Vose R.S., 2009. Radiosonde-Based Trends in Precipitable Water over the Northern Hemisphere: An Update. Journal of Geophysical Research: Atmospheres 114 (D5), 1–8. https://doi.org/10.1029/2008JD010989.
12. Haase J.S., Ge M., Vendel H., Calais E., 2003. Accuracy and Variability of GPS Tropospheric Delay Measurements of Water Vapor in the Western Mediterranean. Journal of Applied Meteorology 42 (11), 1547–1548. https://doi.org/10.1175/1520-0450(2003)0422.0.CO;2.
13. Hagemann S., Bengtsson L., Gendt G., 2003. On the Determination of Atmospheric Water Vapor from GPS Measurements. Journal of Geophysical Research Atmospheres: 108 (D21), 4678. https://doi.org/10.1029/2002JD003235.
14. Hopfield H.S., 1969. Two Quartic Tropospheric Refractivity Profile for Correcting Satellite Data. Journal of Geophysical Research 74 (18), 4487–4499. https://doi.org/10.1029/JC074i018p04487.
15. Jiang W., Chen S., Cai B., Rizos C., Wang J., Shangguan W., 2020. An Analysis of PPP-GPS-Based Decentralized Train Multi-Sensor Navigation System. GPS Solutions 24 (3), 67. https://doi.org/10.1007/s10291-020-00980-5.
16. Kalinnikov V.V., Khutorova O.G., 2019. Validation of Integrated Water-Vapor Content from GNSS Data of Ground-Based Measurements. Izvestiya, Atmospheric and Oceanic Physics 55 (4), 352–356. https://doi.org/10.1134/S0001433819040054.
17. King R.W., Bock Y., 2000. Documentation for the GAMIT GPS. Software Analysis. Version 9.9. Massachusetts Institute of Technology, Cambridge.
18. Li L., Li Y., He Q., Wang X., 2022. Weighted Mean Temperature Modelling Using Regional Radiosonde Observations for the Yangtze River Delta Region in China. Remote Sensing 14 (8), 1909. https://doi.org/10.3390/rs14081909.
19. Lukhneva O.F., Dembelov M.G., Lukhnev A.V., 2016. The Determination of Atmospheric Water Content by the Meteorological and GPS Data. Geodynamics & Tectonophysics 7 (4), 545–553 (in Russian) https://doi.org/10.5800/GT-2016-7-4-0222.
20. Ma Y., Zhao Q., Wu K., Yao W., Liu Y., Li Z., Shi Y., 2022. Comprehensive Analysis and Validation of the Atmospheric Weighted Mean Temperature Models in China. Remote Sensing 14 (14), 3435. https://doi.org/10.3390/rs14143435.
21. Makama E.K., Lim H.S., 2019. Variability and Trend in Integrated Water Vapour from ERA-Interim and IGRA2 Observations over Peninsular Malaysia. Atmosphere 11 (9), 1012. https://doi.org/10.3390/atmos11091012.
22. Mears C., Santer B.D., Wentz F.J., Taylor K., Wehner M., 2007. Relationship Between Temperature and Precipitable Water Changes over Tropical Oceans. Geophysical Research Letters 34 (24), L24709. https://doi.org/10.1029/2007GL031936.
23. Nilsson T., Elgered G., 2008. Long-Term Trends in the Atmospheric Water Vapor Content Estimated from Ground-Based GPS Data. Journal of Geophysical Research: Atmospheres 113, D19101. https://doi.org/10.1029/2008JD010110.
24. Ross R.J., Elliott W.P., 2001. Radiosonde-Based Northern Hemisphere Tropospheric Water Vapor Trends. Journal of Climate 14 (7), 1602–1612. https://doi.org/10.1175/1520-0442(2001)014<1602:RBNHTW>2.0.CO;2.
25. Saastamoinen J., 1972. Atmospheric Correction for Troposphere and Stratosphere in Radio Ranging of Satellites. In: S.W. Henriksen, A. Mancini, B.H. Chovitz (Eds), The Use of Artificial Satellites for Geodesy. Geophysics Monograph Series. Vol. 15. AGU, p. 247–251. https://doi.org/10.1029/GM015p0247.
26. Wagner T., Beirle S., Grzegorski M., Platt U., 2006. Global Trends (1996–2003) of Total Column Precipitable Water Observed by Global Ozone Monitoring Experiment (GOME) on ERS-2 and Their Relation to Near-Surface Temperature. Journal of Geophysical Research: Atmospheres 111, D12102. https://doi.org/10.1029/2005JD006523.
27. Wang J., Dai A., Mears C., 2016. Global Water Vapor Trend from 1988 to 2011 and Its Diurnal Asymmetry Based on GPS, Radiosonde, and Microwave Satellite Measurements. Journal of Climate 29 (14), 5205–5222. https://doi.org/10.1175/JCLI-D-15-0485.1.
28. Zhang F., Barriot J.-P., Xu G., Hopuare M., 2019. Analysis and Comparison of GPS Precipitable Water Estimates Between Two Nearby Stations on Tahiti Island. Sensors 19 (24), 5578. https://doi.org/10.3390/s19245578.
29. Zhou X., Cheng Y., Liu L., Huang Y., Sun H., 2023. Significant Increases in Water Vapor Pressure Correspond with Climate Warming Globally. Water 15 (18), 3219. https://doi.org/10.3390/w15183219.
Review
For citations:
Dembelov M.G., Bashkuev Yu.B., Lukhnev A.V., Sankov V.A. MULTIYEAR TRENDS IN THE TOTAL MOISTURE CONTENT OF THE TROPOSPHERE IN DIFFERENT-LATITUDE ZONES OF EASTERN SIBERIA. Geodynamics & Tectonophysics. 2025;16(6):869. (In Russ.) https://doi.org/10.5800/GT-2025-16-6-0869. EDN: GLMFJQ












































