Preview

Geodynamics & Tectonophysics

Advanced search

GEODYNAMIC CONDITIONS OF SEDIMENTATION AND SOURCES OF PALEOZOIC TERRIGENOUS ROCKS FROM THE YAMKUN SERIES OF THE ARGUN CONTINENTAL MASSIF

https://doi.org/10.5800/GT-2025-16-6-0859

EDN: TJNZRN

Abstract

The paper deals with the distribution of the major oxides and trace elements in the Paleozoic terrigenous rocks of the Ildikan and Gazimursky Zavod formations from the Yamkun series of the Argun continental massif. The main purpose of the study is to reconstruct depositional settings and sources of clastic material. It is shown that the terrigenous rocks of the Ildikan and Gazimursky Zavod formations correspond to different lithotypes: graywackes, arkoses, and litharenites. According to the variations in Zr/Sc and Th/Sc ratios, the rocks of the Yamkun series are the first-cycle sediments. Whole-rock geochemical composition of studied rocks suggests that the main sources of clastic material were felsic and intermediate igneous rocks, with a subordinate amount of mafic rocks. The use of these data in combination with the U-Pb geochronological data on igneous rocks from the Argun massif implies that the initial material was mainly sourced from the Tonian, Cambrian, Ordovician and Early Silurian felsic and intermediate igneous rocks, widely abundant within the Argun continental massif. Additional sources of clastic material may involve the Paleoproterozoic orthogneisses from the Xinhuadukou complex of the Argun massif. The position of figurative points of the composition of the Paleozoic terrigenous rocks from the Yamkun series of the Argun massif on the tectonic discriminant diagrams in combination with geological data indicates a passive continental margin setting for the Lower-Middle Devonian deposits of the Ildikan formation and an active continental margin (or island-arc) setting for the Lower Carboniferous deposits of the Gazimursky Zavod formation.

About the Authors

Yu. N. Smirnova
Institute of Geology and Nature Management, Far Eastern Branch of the Russian Academy of Sciences
Russian Federation

1 Relochniy ln, Blagoveshchensk 675000


Competing Interests:

The authors declare that they have no conflicts of interest relevant to this manuscript. 



A. V. Kurilenko
Karpinsky Russian Geological Research Institute ; Dobretsov Geological Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

74 Sredny Ave, Saint Petersburg, 199106

6а Sakhyanova St, Ulan-Ude 670047, Republic of Buryatia


Competing Interests:

The authors declare that they have no conflicts of interest relevant to this manuscript. 



References

1. Bhatia M.R., 1983. Plate Tectonics and Geochemical Composition of Sandstones. Journal of Geology 91 (6), 611–627. https://doi.org/10.1086/628815.

2. Bhatia M.R., Сrook K.A.W., 1986. Trace Element Characteristics of Greywackes and Tectonic Setting Discrimination of Sedimentary Basins. Contributions to Mineralogy and Petrology 92, 181–193. https://doi.org/10.1007/BF00375292.

3. Blatt H., Middleton G., Murray R., 1972. Origin of Sedimentary Rocks. Prentice Hall, New Jersey, 634 p.

4. Bracciali L., Marroni M., Pandolfi L., Rocchi S., 2007. Geochemistry and Petrography of Western Tethys Cretaceous Sedimentary Covers (Corsica and Northern Apennines): From Source Areas to Configuration of Margins. In: J. Arribas, M.J. Johnsson, S. Critelli (Eds), Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry. Geological Society of America Special Paper 420, 73–93. https://doi.org/10.1130/2006.2420(06).

5. Condie K.C., 1993. Chemical Composition and Evolution of the Upper Continental Crust: Contrasting Results from Surface Samples and Shales. Chemical Geology 104 (1–4), 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.

6. Feng Z., Liu Y., Wu P., Jin. W., Li W., Wen Q., Zhao Y., Zhou J., 2018. Silurian Magmatism on the Eastern Margin of the Erguna Block, NE China: Evolution of the Northern Great Xing’an Range. Gondwana Research 61, 46–62. https://doi.org/10.1016/j.gr.2018.04.011.

7. Feng Z., Zhang Q., Liu Y., Li L., Jiang L., Zhou J., Li W., Ma Y., 2022. Reconstruction of Rodinia Supercontinent: Evidence from the Erguna Block (NE China) and Adjacent Units in the Eastern Central Asian Orogenic Belt. Precambrian Research 368, 106467. https://doi.org/10.1016/j.precamres.2021.106467.

8. Floyd P.A., Leveridge B.E., 1987. Tectonic Environment of the Devonian Gramscatho Basin, South Cornwall: Framework Mode and Geochemical Evidence from Turbiditic Sandstones. Journal of the Geological Society 144 (4), 531–542. https://doi.org/10.1144/gsjgs.144.4.0531.

9. Ge W.-Ch., Chen J.-Sh., Yang H., Zhao G.-Ch., Zhang Y.-L., Tian D.-X., 2015. Tectonic Implications of New Zircon U-Pb Ages for the Xinghuadukou Complex, Erguna Massif, Northern Great Xing’an Range, NE China. Journal of Asian Earth Sciences 106, 169–185. https://doi.org/10.1016/j.jseaes.2015.03.011.

10. Golubev V.N., Chernyshev I.V., Kotov A.B., Sal’nikova E.B., Gol’tsman Yu.V., Bairova E.D., Yakovleva S.Z., 2010. The Strel’tsovka Uranium District: Isotopic Geochronological (U-Pb, Rb-Sr, Sm-Nd) Characterization of Granitoids and Their Place in the Formation History of Uranium Deposits. Geology of Ore Deposits 52 (6), 496–513. https://doi.org/10.1134/S107570151006005X.

11. Gou J., Sun D., Deng Ch., Feng Zh., Tang Z., 2020. Petrogenesis of the Neoproterozoic Xinlin Ophiolite, Northern Great Xing’an Range, Northeastern China: Implications for the Evolution of the Northeastern Branch of the Paleo-Asian Ocean. Precambrian Research 350, 105925. https://doi.org/10.1016/j.precamres.2020.105925.

12. Gou J., Sun D.-Y., Ren Y.-Sh., Liu Y.-J., Zhang Sh.-Y., Fu Ch.-L., Wang T.-H., Wu P.-F., Liu X.-M., 2013. Petrogenesis and Geodynamic Setting of Neoproterozoic and Late Paleozoic Magmatism in the Manzhouli–Erguna Area of Inner Mongolia, China: Geochronological, Geochemical and Hf Isotopic Evidence. Journal of Asian Earth Sciences 67–68, 114–137. https://doi.org/10.1016/j.jseaes.2013.02.016.

13. Hou W., Zhao G., Han Y., Eizenhoefer P.R., Zhang X., Liu Q., 2019. A ~2.5 Ga Magmatic Arc in NE China: New Geochronological and Geochemical Evidence from the Xinghuadukou Complex. Geological Journal 55 (4), 2550–2571. https://doi.org/10.1002/gj.3513.

14. Jain J.C., Neal C.R., Hanchar J.M., 2001. Problems Associated with the Determination of Rare Earth Elements of a "Gem" Quality Zircon by Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research 25 (2–3), 229–237. https://doi.org/10.1111/j.1751-908X.2001.tb00598.x.

15. Kossovskaya A.G., Tuchkova M.I., 1988. On the Problem of Mineralogical and Petrochemical Classification and Genesis of Sand Rocks. Lithology and Mineral Resources 2, 8–24 (in Russian)

16. Kroonenberg S.B., 1994. Effect of Provenance, Sorting and Weathering on the Geochemistry of Fluvial Sands from Different Tectonic and Climatic Environments. In: Proceedings of the 29th International Geological Congress (August 24 – September 3, 1992, Kyoto, Japan). Part А. VSP, Utrecht, Netherlands, p. 69–81.

17. Kurilenko A.V., 2000. On the Age of the Yakovlev Formation of Eastern Transbaikalia. In: Geology and Mineral Resources of the Chita Region. Chitageolsyomka, Chita, p. 112–125 (in Russian)

18. Kurilenko A.V., 2001. Age and Crinoids of the Ildikan Formation (Lower – Middle Devonian) of Eastern Transbaikalia. Bulletin of Moscow Society of Naturalists. Geological Section 76 (6), 43–47 (in Russian)

19. Kurilenko A.V., Bretshtein Yu.S., Butin K.S., 1999. New Biostratigraphic and Paleomagnetic Data on the Devonian in the Western Mongol-Okhotsk Fold Belt. Russian Journal of Pacific Geology 18 (6), 93–103 (in Russian)

20. Kurilenko A.V., Kotlyar G.V., Kulkov N.P., Raitina N.I., Yadrishchenskaya N.G., Starukhina L.P., Markovich E.M., Okuneva T.M. et al., 2002. Atlas of Fauna and Flora of the Paleozoic – Mesozoic of Transbaikalia. Nauka, Novosibirsk, 714 p. (in Russian)

21. Li Zh.-Zh., Qin K.-Zh., Li G.-M., Jin L.-Y., Song G.-X., 2018. Neoproterozoic and Early Paleozoic Magmatic Records from the Chalukou Ore District, Northern Great Xing’an Range, NE China: Implications for Tectonic Evolution and Mesozoic Mo Mineralization. Journal of Asian Earth Sciences 165, 96–113. https://doi.org/10.1016/j.jseaes.2018.06.020.

22. Liu H., Li Y., Wan Zh., Lai Ch.-K., 2020. Early Neoproterozoic Tectonic Evolution of the Erguna Terrane (NE China) and Its Paleogeographic Location in Rodinia Supercontinent: Insights from Magmatic and Sedimentary Record. Gondwana Research 88, 185–200. https://doi.org/10.1016/j.gr.2020.07.005.

23. Liu Y., Li W., Feng Z., Wen Q., Neubauer F., Liang C., 2017. A Review of the Paleozoic Tectonics in the Eastern Part of Central Asian Orogenic Belt. Gondwana Research 43, 123–148. https://doi.org/10.1016/j.gr.2016.03.013.

24. McDonough W.F., Sun S.-S., 1995. The Composition of the Earth. Chemical Geology 120 (3–4), 223−253. https://doi.org/10.1016/0009-2541(94)00140-4.

25. McLennan S.M., Hemming S., McDaniel D.K., Hanson G.N., 1993. Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In: M.J. Johnsson, A. Basu (Eds), Processes Controlling the Composition of Clastic Sediments. Geological Society of America Special Paper 248, 21–40. https://doi.org/10.1130/SPE284-p21.

26. Nikolaeva I.V., Palesskii S.V., Koz’menko O.A., Anoshin G.N., 2008. Analysis of Geologic Reference Materials for REE and HFSE by Inductively Coupled Plasma-Mass Spectrometry (ICP-MS). Geochemistry International 46 (10), 1016–1022. https://doi.org/10.1134/S0016702908100066.

27. Nikolaeva I.V., Palessky S.V., Chirko O.S., Chernonozhkin S.M., 2012. Determination of Major and Trace Elements by Inductively Coupled Mass-Spectrometry in Silicate Rocks After Fusion with LiBO2. Analytics and Control 16 (2), 134–142 (in Russian)

28. Parfenov L.M., Berzin N.A., Khanchuk A.I., Badarch G., Belichenko V.G., Bulgatov A.N., Dril S.I., Kirillova G.L. et al., 2003. A Model for the Formation of Orogenic Belts in Central and Northeast Asia. Russian Journal of Pacific Geology 22 (6), 7–41 (in Russian)

29. Roser B.P., Korsch R.J., 1986. Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology 94 (5), 635–650. https://doi.org/10.1086/629071.

30. Roser B.P., Korsch R.J., 1988. Provenance Signatures of Sandstone – Mudstone Suites Determined Using Discriminant Function Analysis of Major-Element Data. Chemical Geology 67 (1–2), 119–139. https://doi.org/10.1016/0009-2541(88)90010-1.

31. Segrenev A.S., Prots M.E., 2024. Evaluation of the Use of Polyvinyl Alcohol in Preparation of Pressed Samples for X-Ray Fluorescence Analysis. Inorganic Materials 60 (4), 405–412. https://doi.org/10.1134/S0020168524700638.

32. Shao J., Li Y.F., Zhou Y.H., Wang H.B., Zhang J., 2015. Neo-Archaean Magmatic Event in Erguna Massif of Northeast China: Evidence from the Zircon LA-ICP-MS Dating of the Gneissic Monzogranite from the Drill. Journal of Jilin University: Earth Science Edition 45 (2), 364–373. https://doi.org/10.13278/j.cnki.jjuese.201502103.

33. Smirnova Yu.N., Dril S.I., 2022. Geochemistry of Vendian (?) Metasedimentary Rocks of the Byrka Series of the Argun Superterrane. Geochemistry International 60 (7), 450–467. https://doi.org/10.1134/S0016702922030089.

34. Smirnova Yu.N., Kurilenko A.V., Dril S.I., Khubanov V.B., 2024a. Sources of the Upper Proterozoic Terrigenous Deposits in the Northwestern Part of the Argun Massif, Central Asian Fold Belt: Results of U-Th-Pb Geochronological and Sm-Nd Isotopic-Geochemical Studies. Stratigraphy and Geological Correlation 32 (3), 175–200. https://doi.org/10.1134/S0869593824030079.

35. Smirnova Yu.N., Kurilenko A.V., Khubanov V.B., 2023. Composition and Age of Rocks of the Provenance Areas for the Lower – Middle Cambrian (?) Terrigenous Sediments of the Ernichnaya Formation of the Argun Massif, Eastern Part of the Central Asian Fold Belt. Stratigraphy and Geological Correlation 31 (5), 443–458. https://doi.org/10.1134/S0869593823050076.

36. Smirnova Yu.N., Kurilenko A.V., Khubanov V.B., Dril S.I., 2024b. Sources of Terrigenous Sediments of the Lower Cambrian Bystraya Formation of the Argun Massif and Paleogeodynamic Settings of Their Accumulation. Russian Journal of Pacific Geology 18 (2), 150–168. https://doi.org/10.1134/S1819714024020076.

37. Sorokin A.A., Kotov A.B., Sal’nikova Y.B., Kudryashov N.M., 2009. Early Paleozoic Granitoids of the Argun, Mamyn, Bureya Terranes of the Central Asian Fold Belt. Geochimica et Cosmochimica Acta 73 (13), A1254.

38. Sorokin A.A., Kudryashov N.M., Jinyi L., Zhuravlev D.Z., Pin Y., Guihua S., Liming G., 2004. Early Paleozoic Granitoids in the Eastern Margin of the Argun' Terrane, Amur Area: First Geochemical and Geochronologic Data. Petrology 12 (4), 367–376.

39. Sorokin A.A., Sorokin A.P., Kudryashov N.M., 2002. Fragments of Paleozoic Active Margins at the Southern Periphery of the Mongolia, Okhotsk Fold Belt: Evidence from the Northeastern Argun Terrane, Amur River Region. Doklady Earth Sciences 387 (9), 1038–1042.

40. State Geological Map of the Russian Federation, 1998. Argun Series. Scale of 1:200000. Sheet M-50-XI (Kalga). VSEGEI, Saint Petersburg (in Russian)

41. State Geological Map of the Russian Federation, 2001. Argun Series. Scale of 1:200000. Sheet M-50-V (Gazimurskiy Zavod). VSEGEI, Saint Petersburg (in Russian)

42. State Geological Map of the Russian Federation, 2010. Aldan-Transbaikalian Series. Scale of 1:1000000. Sheet M-50 (Borzya). VSEGEI, Saint Petersburg (in Russian)

43. State Geological Map of the Russian Federation, 2015. Argun Series. Scale of 1:200000. Sheet M-50-III (Baley). VSEGEI, Saint Petersburg (in Russian)

44. Tang J., Xu W.-L., Wang F., Wang W., Xu M.-J., Zhang Y.-H., 2013. Geochronology and Geochemistry of Neoproterozoic Magmatism in the Erguna Massif, NE China: Petrogenesis and Implications for the Breakup of the Rodinia Supercontinent. Precambrian Research 224, 597–611. https://doi.org/10.1016/j.precamres.2012.10.019.

45. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 312 p.

46. Thompson M., Walsh J.N., 1988. A Handbook of Inductively Coupled Plasma Spectrometry. Nedra, Moscow, 288 p. (in Russian)

47. Totten M.W., Hanan M.A., Weaver B.L., 2000. Beyond Whole-Rock Geochemistry of Shales: The Importance of Assessing Mineralogic Controls for Revealing Tectonic Discriminants of Multiple Sediment Sources for the Ouachita Mountain Flysch Deposits. GSA Bulletin 112 (7), 1012–1022. https://doi.org/10.1130/0016-7606(2000)112%3C1012:BWGOST%3E2.0.CO;2.

48. Wronkiewicz D.J., Condie K.C., 1987. Geochemistry of Archean Shales from the Witwatersrand Supergroup, South Africa: Source-Area Weathering and Provenance. Geochimica et Cosmochimica Acta 51 (9), 2401–2416. https://doi.org/10.1016/0016-7037(87)90293-6.

49. Wu F.Y., Sun D.-Y., Ge W.-C., Zhang Y.-B., Grant M.L., Wilde S.A., Jahn B.-M., 2011. Geochronology of the Phanerozoic Granitoids in Northeastern China. Journal of Asian Earth Sciences 41 (1), 1–30. https://doi.org/10.1016/j.jseaes.2010.11.014.

50. Wu G., Chen Y., Chen Y., Zeng Q., 2012. Zircon U-Pb Ages of the Metamorphic Supracrustal Rocks of the Xinghuadukou Group and Granitic Complexes in the Argun Massif of the Northern Great Hinggan Range, NE China, and Their Tectonic Implications. Journal of Asian Earth Sciences 49, 214–233. https://doi.org/10.1016/j.jseaes.2011.11.023.

51. Yang H., Liu Y., Zheng J., Liang Z., Wang X., Tang X., Su Y., 2017. Petrogenesis and Geological Significance of Neoproterozoic Amphibolite and Granite in Bowuleshan Area, Erguna Massif, Northeast China. Geological Bulletin of China 36 (2–3), 342–356.


Review

For citations:


Smirnova Yu.N., Kurilenko A.V. GEODYNAMIC CONDITIONS OF SEDIMENTATION AND SOURCES OF PALEOZOIC TERRIGENOUS ROCKS FROM THE YAMKUN SERIES OF THE ARGUN CONTINENTAL MASSIF. Geodynamics & Tectonophysics. 2025;16(6):859. (In Russ.) https://doi.org/10.5800/GT-2025-16-6-0859. EDN: TJNZRN

Views: 60


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)