MACHINE LEARNING METHODS TO SOLVE THE PROBLEM OF DETECTING EARTHQUAKE PRECURSORS BASED ON SEISMIC NOISE MONITORING DATA FOR THE BAIKAL RIFT SYSTEM
https://doi.org/10.5800/GT-2025-16-5-0854
EDN: https://elibrary.ru/wkekwd
Abstract
The paper deals with the monitoring-based determination of spectral composition of microseismic noise (MSN) several hours before weak and moderate seismic events in the Baikal rift system. Consideration is being given to 40 earthquakes with an energy class of K=9.5–14.5 at 10 to 120 km distances from the epicenters to the monitoring sites. It has been found that the change in spectral composition of MSN is statistically significant compared to background values. The frequency range of 0.5–2.5 Hz exhibits an increase in power spectral density, whereas higher frequencies, approximately 4 to 16 Hz, show its decrease. Machine learning methods were used to construct a binary classification model regarding the records of MSN whose spectral composition allows detecting the occurrence of short-term earthquake precursors. The studies were based on the digital platform (https://izk.sscc.ru). Seismic data is received at the digital platform from integrated monitoring of hazardous geological processes at the sites of the Institute of the Earth’s Crust SB RAS, Irkutsk.
Keywords
About the Authors
A. P. GrigoryukRussian Federation
Andrey P. Grigoryuk
6 Academician Lavrentiev Ave, Novosibirsk 630090
L. P. Braginskaya
Russian Federation
6 Academician Lavrentiev Ave, Novosibirsk 630090
V. V. Kovalevsky
Russian Federation
6 Academician Lavrentiev Ave, Novosibirsk 630090
A. A. Dobrynina
Russian Federation
128 Lermontov St, Irkutsk 664033; 134 Lermontov St, Irkutsk 664033; 6а Sakhyanova St, Ulan-Ude 670047, Republic of Buryatia
References
1. Anikiev D., Birnie C., bin Waheed U., Alkhalifah T., Gu Ch., Verschuur D.J., Eisner L., 2023. Machine Learning in Microseismic Monitoring. Earth-Science Reviews 239, 104371. https://doi.org/10.1016/j.earscirev.2023.104371.
2. Bletery Q., Nocquet J.-M., 2023. The Precursory Phase of Large Earthquakes. Science 381, 297−301. https://doi.org/10.1126/science.adg2565.
3. Bornyakov S.A., Dobrynina A.A., Panteleev I.A., Sankov V.A., Salko D.V., Vstovsky G.V., Miroshnichenko A.I., Shagun A.N., Sintsov A.E., Karimova A.A., 2024. Tectonophysical Model of the Tectonic Earthquake Focus. Geosystems of Transition Zones 8 (4), 313–327 (in Russian). https://doi.org/10.30730/gtrz.2024.8.4.313-327.
4. Bornyakov S.A., Dobrynina A.A., Shagun A.N., Sankov V.A., Salko D.V., Miroshnichenko A.I., Vstovsky G.V., Sintsov A.E., 2023. On Similarities Between Deformation Processes Preceding Ice Shocks and Tectonic Earthquakes. Doklady Earth Sciences 508 (2), 91–96. https://doi.org/10.1134/S1028334X22602097.
5. Braginskaya L.P., Grigoryuk A.P., Kovalevsky V.V., Dobrynina A.A., 2023. Digital Platform for Integrated Geophysical Investigations in the Baikal Region. Seismic Instruments 59 (1–3), 54–62. https://doi.org/10.3103/S0747923924700063.
6. Dobrynina A.A., Perevalova N.P., Sankov V.A., Edemsky I.K., Lukhnev A.V., 2022. Analysis of the Seismic and Ionospheric Effects of the Kudarinsky Earthquake on December 9, 2020. Geodynamics & Tectonophysics 13 (2), 0622 (in Russian) https://doi.org/10.5800/GT-2022-13-2s-0622.
7. Dobrynina A.A., Sankov V.A., Bornyakov S.A., Korol S.A., Sankov A.V., 2023. Anomalous Seismic Noises from the December 9, 2020 MW=5.6 KUDARA Earthquake in the Baikal Basin. Doklady Earth Sciences 508 (1), 23–29. https://doi.org/10.1134/S1028334X22601912.
8. Emanov A.F., Emanov A.A., Chechelnitsky V.V., Shevkunova E.V., Fateev A.V., Kobeleva E.A., Podkorytova V.G., Frolov M.V., Eshkunova I.F., 2023. Khubsugul Earthquake of January 11, 2021 with M=6.7 and Its Aftershocks. In: Earthquakes of Russia in 2021. GS RAS, Obninsk, p. 123–132 (in Russian).
9. Kong Q., Trugman D.T., Ross Z.E., Bianco M.J., Meade B.J., Gerstoft P., 2019. Machine Learning in Seismology: Turning Data Into Insights. Seismological Research Letters 90 (1), 3–14. https://doi.org/10.1785/0220180259.
10. Korol S.A., Sankov A.V., Dobrynina А.А., Sankov V.A., 2022. Ambient Seismic Noise Variations Before Earthquakes in the Baikal Rift System. Geodynamics & Tectonophysics 13 (2), 0632 (in Russian) https://doi.org/10.5800/GT-2022-13-2s-0632.
11. Kubo H., Naoi M., Kano M., 2024. Recent Advances in Earthquake Seismology Using Machine Learning. Earth, Planets and Space 76 (1), 36. https://doi.org/10.1186/s40623-024-01982-0.
12. Logatchev N.A., Florensov N.A., 1978. The Baikal System of Rift Valleys. Tectonophysics 45 (1), 1–13, https://doi.org/10.1016/0040-1951(78)90218-4.
13. Lyubushin A.A., 2011. Seismic Catastrophe in Japan March 11, 2011: Long-Term Prediction on the Basis of Low-Frequency Microseisms. Izvestiya, Atmospheric and Oceanic Physics Geophysical Processes and Biosphere 47 (8), 904–921. https://doi.org/10.1134/S0001433811080056.
14. Mignan A., Broccardo M., 2020. Neural Network Applications in Earthquake Prediction (1994–2019): Meta-Analytic and Statistical Insights on Their Limitations. Seismological Research Letters 91 (4), 2330–2342. https://doi.org/10.1785/0220200021.
15. Radziminovich N.A., Miroshnichenko A.I., Zuev F.L., 2019. Magnitude of Completeness, b-Value, and Spatial Correlation Dimension of Earthquakes in the South Baikal Basin, Baikal Rift System. Tectonophysics 759, 44–57, https://doi.org/10.1016/j.tecto.2019.04.002.
16. Ridzwan N.S.M., Yusoff S.H.M., 2023. Machine Learning for Earthquake Prediction: A Review (2017–2021). Earth Science Informatics 16 (2), 1133–1149. https://doi.org/10.1007/s12145-023-00991-z.
17. Saltykov V.A., 2017. On the Possibility of Using the Tidal Modulation of Seismic Waves for Forecasting Earthquakes. Izvestiya, Physics of the Solid Earth 53 (2), 250–261. https://doi.org/10.1134/S1069351317010128.
18. San’kov V.A., Levi K.G., Calais E., Déverchère J., Lesne O., Lukhnev A.V., Miroshnichenko A.I., Buddo V.Yu., Zalutskii V.T., Bashkuev Yu.B., 1999. Historic and Holocene Horizontal Movements Measured at the Baikal Geodynamic Test Ground. Russian Geology and Geophysics 40 (3), 414–421.
19. Seminsky K.Zh., Bornyakov S.A., Dobrynina A.A., Radziminovich N.A., Rasskazov S.V., San’kov V.A., Mialle P., Bobrov A.A. et al., 2021. The Bystrinskoe Earthquake in the Southern Baikal Region (21 September 2020, Mw=5.4): Main Parameters, Precursors, and Accompanying Effects. Russian Geology and Geophysics 62 (5), 589–603. https://doi.org/10.2113/RGG20204296.
20. Seminsky K.Zh., Dobrynina A.A., Bornyakov S.A., Sankov V.A., Pospeev A.V., Rasskazov S.V., Perevalova N.P., Seminskiy I.K. et al., 2022. Integrated Monitoring of Hazardous Geological Processes in Pribaikalye: Pilot Network and First Results. Geodynamics & Tectonophysics 13 (5), 0677 (in Russian) https://doi.org/10.5800/GT-2022-13-5-0677.
21. Sobolev G.A., 2004. Microseismic Variations Prior to a Strong Earthquake. Izvestiya, Physics of the Solid Earth 40 (6), 455–464.
22. Sobolev G.A., 2011. A Concept of Predictability of Earthquakes Based on Seismicity Dynamics at Trigger Effect. IPE RAS, Moscow, 56 p. (in Russian)
23. Sobolev G.A., Lyubushin A.A., Zakrzhevskaya N.A., 2008. Asymmetrical Pulses, the Periodicity and Synchronization of Low Frequency Microseisms. Journal of Volcanology and Seismology 2 (2), 118–134. https://doi.org/10.1134/S074204630802005X.
24. Sobolev G.A., Ponomarev A.V., 2003. Physics of Earthquakes and Precursors. Nauka, Moscow, 270 p. (in Russian)
Review
For citations:
Grigoryuk A.P., Braginskaya L.P., Kovalevsky V.V., Dobrynina A.A. MACHINE LEARNING METHODS TO SOLVE THE PROBLEM OF DETECTING EARTHQUAKE PRECURSORS BASED ON SEISMIC NOISE MONITORING DATA FOR THE BAIKAL RIFT SYSTEM. Geodynamics & Tectonophysics. 2025;16(5):0854. (In Russ.) https://doi.org/10.5800/GT-2025-16-5-0854. EDN: https://elibrary.ru/wkekwd