Preview

Geodynamics & Tectonophysics

Advanced search

BARREMIAN MAGMATISM OF THE NORTHWEST OF THE TYTYLVEEM DEPRESSION (WESTERN CHUKOTKA)

https://doi.org/10.5800/GT-2025-16-5-0850

EDN: https://elibrary.ru/mfybce

Abstract

The article presents new data on the isotopic geochronology and geochemistry of magmatic complexes on the northwestern periphery of the Tytylveem Depression, Western Chukotka. U-Pb ages obtained for the emplacement of monzonite stocks of the Chukotka complex (124±1 Ma) and for the onset of effusive activity associated with the flood basaltic andesites of the Tytylveem formation (124±1 Ma) are the oldest known ages of post-collisional magmatism within the Chukotka region. Granitoids of the Chukotka complex are dated for the first time. Dolerites of the Tytylveem subvolcanic complex differ from the host Tytylveem volcanic rocks by lower MgO, higher K contents, and affilation with the oxidized magnetite series. Monzonites of the Chukotka complex and subvolcanic dolerites derive from sources with a higher proportion of depleted mantle component then the younger (122–117 Ma) rocks of the Tytylveem volcano-plutonic belt. Mineralogical and geochemical characteristics of the monzonites indicate that the Chukotka complex magmatic rocks may belong to the core of a porphyry epithermal system that includes the Dvoinoye and Sentyabrskoye deposits.

About the Authors

N. S. Svirin
Geological Institute, Russian Academy of Sciences
Russian Federation

Nikolay S. Svirin

7-1 Pyzhevsky Ln, Moscow 119017



E. V. Vatrushkina
Geological Institute, Russian Academy of Sciences
Russian Federation

7-1 Pyzhevsky Ln, Moscow 119017



M. V. Luchitskaya
Geological Institute, Russian Academy of Sciences
Russian Federation

7-1 Pyzhevsky Ln, Moscow 119017



References

1. Akinin V.V., Andronikov A.V., Mukasa S.B., Miller E.L., 2013. Cretaceous Lower Crust of the Continental Margins of the Northern Pacific: Petrological and Geochronological Data on Lower to Middle Crustal Xenoliths. Petrology 21 (1), 28-65. https://doi.org/10.1134/S0869591113010013.

2. Akinin V.V., Polzunenkov G.O., Gottlieb E.S., Miller E.L., 2022. Cretaceous Monzonite-Granite-Migmatite Velitkenay Complex: Petrology, Geochemistry of Rocks and Zircons (U-Pb, Hf, O) as Applied to Reconstructing the Evolution of Magmatism and Continental Crust in Artic Alaska–Chukotka Block. Petrology 30 (3), 227–257. https://doi.org/10.1134/S086959112203002X.

3. Akinin V.V., Tomson B.T., Polzunenkov G.O., 2015. U-Pb and 40Ar/39Ar Dating of Magmatism and Mineralization at the Kupol and Dvoinoe Gold Deposits. In: Isotope Dating of Geological Processes: New Results, Approaches and Prospects. Proceedings of the VI Russian Conference on Isotope Geochronology (June 2–5, 2015). Sprinter, Saint Petersburg, p. 19–21 (in Russian)

4. Baker T., Pollard P.J., Mustard R., Mark G., Graham J.L., 2005. A Comparison of Graniterelated Tin, Tungstein, and Gold-Bismuth Deposits: Implications for Exploration. SEG Discovery 61, 6–17. https://doi.org/10.5382/SEGnews.2005-61.fea.

5. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.

6. Grantz A., Clark D.L., Phillips R.L., Srivastava S.P., Blome C.D., Gray L.B., Haga H., Mamet B.L. et al., 1998. Phanerozoic Stratigraphy of Northwind Ridge, Magnetic Anomalies in the Canada Basin, and the Geometry and Timing of Rifting in the Amerasia Basin, Arctic Ocean. GSA Bulletin 110 (6), 801–820. https://doi.org/10.1130/0016-7606(1998)110<0801:PSONRM>2.3.CO;2.

7. Grebennikov A.V., Khanchuk A.I., 2021. Geodynamics and Magmatism of the Pacific-Type Transform Margins. Aspects and Discriminant Diagrams. Russian Journal of Pacific Geology 40 (1), 3–24 (in Russian) https://doi.org/10.30911/0207-4028-2021-40-1-3-24.

8. Karandashev V.K., Khvostikov V.A., Nosenko S.V., Burmii Zh.P., 2017. Stable Highly Enriched Isotopes in Routine Analysis of Rocks, Soils, Grounds, and Sediments by ICPMS. Inorganic Materials 53 (14), 1432–1441. https://doi.org/10.1134/S0020168517140084.

9. Karandashev V.K., Khvostikov V.A., Nosenko S.Yu., Burmii Zh.P., 2016. Highly Enriched Stable Isotopes in Large Scale Analysis of Rocks, Soils, Subsoils and Bottom Sediments Using Inductively Coupled Plasma Mass Spectrometry (ICPMS). Industrial Laboratory. Diagnostics of Materials 82 (7), 6–15 (in Russian)

10. Khanchuk A.I., Martynov Yu.A., 2011. Tectonics and Magmatism of the Sliding of Oceanic and Continental Plate Margins. In: Geological Processes in the Lithospheric Plates Subduction, Collision, and Slide Environments. Proceedings of the Russian Scientific Conference with Foreign Participation (20–23 September, 2011). Dalnauka, Vladivostok, p. 45–49 (in Russian

11. Khanchuk A.I., Martynov Yu.A., Perepelov A.B., Kruk N.N., 2009. Magmatism of Lithospheric Plate Sliding Zones: New Data and Prospects. In: Volcanism and Geodynamics: Proceedings of the IV All‑Russian Symposium on Volcanology and Paleovolcanology. Vol. 1. Institute of Volcanology and Seismology FEB RAS, Petropavlovsk‑Kamchatsky, p. 32–37 (in Russian)

12. Laverov N.P., Lobkovsky L.I., Kononov M.V., Dobretsov N.L., Vernikovsky V.A., Sokolov S.D., Shipilov E.V., 2013. A Geodynamic Model of the Evolution of the Arctic Basin and Adjacent Territories in the Mesozoic and Cenozoic and the Outer Limit of the Russian Continental Shelf. Geotectonics 47 (1), 1–30. https://doi.org/10.1134/S0016852113010044.

13. Luchitskaya M.V., Sokolov S.D., 2021. Stages of Granitoid Magmatism and Formation of the Continental Crust of Eastern Arctic. Geotectonics 55 (5), 717–739. https://doi.org/10.1134/S0016852121050046.

14. Mo X., Zhao Z., Deng J., Flower M., Yu X., Luo Z., Li Y., Zhou S., Dong G., Zhu D., Wang L., 2006. Petrology and Geochemistry of Postcollisional Volcanic Rocks from the Tibetan Plateau: Implications for Lithosphere Heterogeneity and Collision-Induced Asthenospheric Mantle Flow. In: Y. Dilek, S. Pavlides (Eds), Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America Special Paper 409, 507–530. https://doi.org/10.1130/2006.2409(24).

15. Naumov V.B., Girnis A.V., Dorofeeva V.A., Kovalenker V.A., 2022. Volatile, Trace, and Ore Elements in Magmatic Melts and Natural Fluids: Evidence from Mineral-Hosted Inclusions. II. Effect of Crystallization Differentiation on the Concentrations of Ore Elements. Geochemistry International 60 (6), 537–550. https://doi.org/10.1134/S0016702922060040.

16. Nikolaev Yu.N., Prokof’ev V.Yu., Apletalin A.V., Vlasov E.A., Baksheev I.A., Kal’ko I.A., Komarova Ya.S., 2013. Gold-Telluride Mineralization of the Western Chukchi Peninsula, Russia: Mineralogy, Geochemistry, and Formation Conditions. Geology of Ore Deposits 55 (2), 96–124. https://doi.org/10.1134/S1075701513020049.

17. Parfenov L.M., 1984. Continental Margins and Island Arcs of the Mesozoids of Northeast Asia. Nauka, Novosibirsk, 192 p. (in Russian)

18. Peccerillo A., Taylor S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology 58 (1), 63–81. https://doi.org/10.1007/BF00384745.

19. Polzunenkov G.O., 2023. Petrology and Isotopic Geochronology of the Velitkenai Monzonite–Granite–Migmatite Complex (Arctic Alaska). Brief PhD Thesis (Candidate of Geology and Mineralogy). Novosibirsk, 20 p. (in Russian)

20. Sakhno V.G., Grigoriev N.V., Kurashko V.V., 2016. Geochronology and Isotopic-Geochemical Characteristics of Magmatic Complexes of Gold-Silver Ore-Magmatic Structures in the Chukotka Sector of the Russian Arctic Coast. Doklady Earth Sciences 468 (1), 447–453. https://doi.org/10.1134/S1028334X16050238.

21. Sakhno V.G., Tsurikova L.S., Maksimov S.O., 2019. Geochronological and Geochemical Features of Magmatic Goldand Silverbearing Complexes in the Chukotka Sector of the Russian Arctic Coast. Lithosphere19 (6), 861–888 (in Russian) https://doi.org/10.24930/1681-9004-2019-19-6-861-888.

22. Sharpenok L.N., Kostin A.E., Kukharenko E.A., 2013. TAS Diagram of the Sum of Alkalis – Silica for Chemical Classification and Diagnosis of Plutonic Rocks. Regional Geology and Metallogeny 56, 40–50 (in Russian)

23. Sokolov S.D., Tuchkova M.I., Ganelin A.V., Bondarenko G.E., Layer P., 2015. Tectonics of the South Anyui Suture, Northeastern Asia. Geotectonics 49 (1), 3–26. https://doi.org/10.1134/S0016852115010057.

24. Sokolov S.D., Tuchkova M.I., Ledneva G.V., Luchitskaya M.V., Ganelin A.V., Vatrushkina E.V., Moiseev A.V., 2021. Tectonic Position of the South Anyui Suture. Geotectonics 55 (5), 697–716. https://doi.org/10.1134/S0016852121050083.

25. Stacey J.T., Kramers J.D., 1975. Approximation of Terrestrial Lead Isotope Evolution by a Two-Stage Model. Earth and Planetary Science Letters 26 (2), 207–221. https://doi.org/10.1016/0012-821X(75)90088-6.

26. State Geological Map of the Russian Federation, 2012. Chukotka Series. Scale of 1:1000000. Sheet Q-59 (Markovo). Explanatory Note. VSEGEI, Saint Petersburg, 226 (in Russian)

27. State Geological Map of the Russian Federation, 2016. Anyuisko-Chaunskaya Series. Scale of 1:200000. Sheet Q-59-I, II (Mount Dvukh Tsirkov). Moscow Branch of VSEGEI, Moscow (in Russian)

28. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

29. Svirin N.S., 2025. Patterns of Distribution of Gold-Silver and Copper-Porphyry Mineralization of the Tytylveem Depression (Western Chukotka). Mineral Resource Base of Diamonds, Noble and Non-Ferrous Metals – from Prediction to Mining. Ore School 2025. Abstracts of the VI Youth Scientific and Educational Conference of TsNIGRI (February 12–14, 2025). TsNIGRI, Moscow, p. 95–96 (in Russian)

30. Thomson B., Téllez, C., Dietrich A., Oliver N.H.S., Akinin V., Blenkinsop T.G., Guskov A., Benowitz J., Layer P.W., Polzunenkov G., 2022. The Dvoinoye and September Northeast High-Grade Epithermal Au–Ag Veins, Vodorazdelnaya District, Chukotka Region, Russia. Mineralium Deposita 57 (3), 353–376. https://doi.org/10.1007/s00126-021-01065-0.

31. Tikhomirov P.L., 2020. Cretaceous Continental‑Margin Magmatism of Northeastern Asia and the Genesis of the Largest Phanerozoic Provinces of Silicic Volcanism. GEOS, Moscow, 376 p. (in Russian)

32. Tikhomirov P.L., Luchitskaya M.V., Prokofiev V.Y., Akinin V.V., Miller E.L., Isaeva E.P., Palechek T.N., Starikova E.V., Boldyreva A.I., Wiegand B., 2023. Evolution of Aptian and Albian Magmatism of Western and Northern Chukotka (Northeast Russia) Based on Zircon U-Pb Geochronology and Rock Geochemistry. International Geology Review 66 (2), 607–632. https://doi.org/10.1080/00206814.2023.2205494.

33. Tikhomirov P.L., Prokof’ev V.Yu., Kal’ko I.A., Apletalin A.V., Nikolaev Yu.N., Kobayashi K., Nakamura E., 2017. Post-Collisional Magmatism of Western Chukotka and Early Cretaceous Tectonic Rearrangement in Northeastern Asia. Geotectonics 51 (2), 131–151. https://doi.org/10.1134/S0016852117020054.

34. Zartman R.E., Doe B.R., 1981. Plumbotectonics – the Model. Tectonophysics 75 (1–2), 135–162. https://doi.org/10.1016/0040-1951(81)90213-4.


Review

For citations:


Svirin N.S., Vatrushkina E.V., Luchitskaya M.V. BARREMIAN MAGMATISM OF THE NORTHWEST OF THE TYTYLVEEM DEPRESSION (WESTERN CHUKOTKA). Geodynamics & Tectonophysics. 2025;16(5):0850. (In Russ.) https://doi.org/10.5800/GT-2025-16-5-0850. EDN: https://elibrary.ru/mfybce

Views: 26


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)