40Ar/39Ar DATING OF ALKALINE ROCKS FROM THE BURPALA MASSIF AS A KEY TO UNDERSTANDING ITS FORMATION DURATION
https://doi.org/10.5800/GT-2025-16-5-0849
Abstract
The article presents the results of 40Ar/39Ar dating of rocks (quartz and alkali syenites, nepheline syenites with REE-Nb-Zr mineralization) from the Burpala massif using feldspar, phlogopite, and amphibole. The obtained results limit the closure of the K-Ar isotope system in feldspars of quartz and alkali syenites to 274–283 Ma, while the age of closure of the K-Ar isotope system in amphibole of alkali syenite and in phlogopite of ore-bearing nepheline syenite is 298±4 Ma and 301±4 Ma, respectively. Estimates of the formation pressure using the plagioclase–hornblende geobarometer show that the massif rocks were formed at a depth of about 10 km. Comparison with zircon age values indicates a simultaneous closure of the U-Pb and K-Ar isotope systems in zircons, phlogopite and amphibole, respectively. The closure of the K-Ar isotope system in feldspars occurred 12–15 million years later.
Keywords
About the Authors
A. V. PonomarchukRussian Federation
Anton V. Ponomarchuk
3 Academician Koptyug Ave, Novosibirsk 630090;1 Pirogov St, Novosibirsk 630090
A. G. Doroshkevich
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090;1 Pirogov St, Novosibirsk 630090
I. A. Izbrodin
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090;1 Pirogov St, Novosibirsk 630090
A. V. Malyutina
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090;1 Pirogov St, Novosibirsk 630090
T. A. Radomskaya
Russian Federation
1 Pirogov St, Novosibirsk 630090; 1а Favorsky St, Irkutsk 664033
References
1. Anderson J.L., Smith D.R., 1995. The Effect of Temperature and fO2 on Al-in-Hornblende Barometry. American Mineralogist 80 (5–6), 549–559. https://doi.org/10.2138/am-1995-5-614.
2. Arkhangelskaya V.V., 1974. Rare-Metal Alkaline Complexes of the Southern Margin of the Siberian Platform. Nedra, Moscow, 128 p. (in Russian)
3. Baksi A.K., Archibald D.A., Farrar E., 1996. Intercalibration of 40Ar/39Ar Dating Standards. Chemical Geology 129 (3–4), 307–324. https://doi.org/10.1016/0009-2541(95)00154-9.
4. Carter J.N., Hasler C.E.J., Fuentes A.J., Tholt A.J., Morgan L.E., Renne P.R., 2025. Bayesian Calibration of the 40K Decay Scheme with Implications for 40K-Based Geochronology. Geochimica et Cosmochimica Acta 397, 149–163. https://doi.org/10.1016/j.gca.2025.03.024.
5. Dodson M.H., 1973. Closure Temperature in Cooling Geochronological and Petrological Systems. Contributions to Mineralogy and Petrology 40, 259–274. https://doi.org/10.1007/BF00373790.
6. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Ivanov A.V., 2013. Late Paleozoic – Mesozoic Subduction-Related Magmatism at the Southern Margin of the Siberian Continent and the 150 Million-Year History of the Mongol-Okhotsk Ocean. Journal Asian Earth Sciences 62, 79–97. https://doi.org/10.1016/j.jseaes.2012.07.023.
7. Doroshkevich A.G., Ripp G.S., Izbrodin I.A., Savatenkov V.M., 2012. Alkaline Magmatism of the Vitim Province, West Transbaikalia, Russia: Age, Mineralogical, Geochemical and Isotope (О, C, D, Sr and Nd) Data. Lithos 152, 157–172. https://doi.org/10.1016/j.lithos.2012.05.002.
8. Grau Malonda A., Grau Carles A., 2002. Half-Life Determination of 40K by LSC. Applied Radiation and Isotopes 56 (1–2), 153–156. https://doi.org/10.1016/S0969-8043(01)00181-6.
9. Harrison T.M., Heizler M.T., McKeegan K.D., Schmitt A.K., 2010. In Situ 40K–40Ca “Double-Plus” SIMS Dating Resolves Klokken Feldspar 40K–40Ar Paradox. Earth and Planetary Science Letters 299 (3–4), 426–433. https://doi.org/10.1016/j.epsl.2010.09.023.
10. Harrison T.M., Lovera O.M., 2014. The Multi-Diffusion Domain Model: Past, Present and Future. In: F. Jourdan, D.F. Mark, C. Verati (Eds), Advances in 40Ar/39Ar Dating: From Archaeology to Planetary Sciences. Geological Society of London Special Publications 378, 91–106. https://doi.org/10.1144/SP378.9.
11. Hodges K.V., 2004. Geochronology and Thermochronology in Orogenic Systems. Treatise on Geochemistry 3, 263–292. https://doi.org/10.1016/B0-08-043751-6/03024-3.
12. Ivanov A.V., Demonterova E.I., Reznitskii L.Z., Barash I.G., Arzhannikov S.G., Arzhannikova A.V., Hung C.-H., Chung S.-L., Iizuka Y., 2016. Catastrophic Outburst and Tsunami Flooding of Lake Baikal: U-Pb Detrital Zircon Provenance Study of the Palaeo-Manzurka Megaflood Sediments. International Geology Review 58 (14), 1818–1830. https://doi.org/10.1080/00206814.2015.1064329.
13. Izbrodin I.А., Doroshkevich А.G., Malyutina А.V., Semenova D.V., Radomskaya Т.А., Kruk М.N., Prokopyev I.R., Starikova А.Е., Rampilov М.О., 2024. Geochronology of Alkaline Rocks from the Burpala Massif (Northern Pribaikalye): New U-Pb Data. Geodynamics & Tectonophysics 15 (1), 0741 (in Russian) https://doi.org/10.5800/GT-2024-15-1-0741.
14. Izbrodin I.A., Doroshkevich A.G., Rampilov M.O., Elbaev A.L., Ripp G.S., 2020. Late Paleozoic Alkaline Magmatism in Western Transbaikalia, Russia: Implications for Magma Sources and Tectonic Settings. Geoscience Frontiers 11 (4), 1289–1303. https://doi.org/10.1016/j.gsf.2019.12.009.
15. Izbrodin I.A., Doroshkevich A.G., Rampilov M.O., Ripp G.S., Lastochkin E.I., Khubanov V.B., Posokhov V.F., Vladykin N.V., 2017. Age and Mineralogical and Geochemical Parameters of Rocks of the China Alkaline Massif (Western Transbaikalia). Russian Geology and Geophysics 58 (8), 903–921. https://doi.org/10.1016/j.rgg.2017.07.002.
16. Khubanov V.B., Tsygankov A.A., Burmakina G.N., 2021. The Duration and Geodynamics of Formation of the Angara-Vitim Batholith: Results of U-Pb Isotope (LA-ICP-MS) Dating of Magmatic and Detrital Zircons. Russian Geology and Geophysics 62 (12), 1331–1349. https://doi.org/10.2113/RGG20204223.
17. Kossert K., Amelin Yu., Arnold D., Merle R., Mougeot X., Schmiedel M., Zapata-García D., 2022. Activity Standardization of Two Enriched 40K Solutions for the Determination of Decay Scheme Parameters and the Half-Life. Applied Radiation and Isotopes 188, 110362. https://doi.org/10.1016/j.apradiso.2022.110362.
18. Kossert K., Günther E., 2004. LSC Measurements of the Half-Life of 40K. Applied Radiation and Isotopes 60 (2–4), 459–464. https://doi.org/10.1016/j.apradiso.2003.11.059.
19. Kotov A.B., Vladykin N.V., Yarmolyuk V.V., Sal’nikova E.B., Sotnikova I.A., Yakovleva S.Z., 2013. Permian Age of Burpala Alkaline Pluton, Northern Transbaikalia: Geodynamic Implications. Doklady Earth Sciences 453 (1), 1082–1085. https://doi.org/10.1134/S1028334X13110160.
20. Litvinovsky B.A., Posokhov V.F., Zanvilevich A.N., 1999. New Rb-Sr Data on the Age of Late Paleozoic Granitoids of Western Transbaikalia. Geology and Geophysics 40 (5), 677–685.
21. Litvinovsky B.A., Tsygankov A.A., Jahn B.M., Katzir Y., Be’eri-Shlevin Y., 2011. Origin and Evolution of Overlapping Calc-Alkaline and Alkaline Magmas: The Late Palaeozoic Post-Collisional Igneous Province of Transbaikalia (Russia). Lithos 125 (3–4), 845–874. https://doi.org/10.1016/j.lithos.2011.04.007.
22. Lovera O.M., Richter F.M., Harrison T.M., 1989. The 40Ar/39Ar Thermochronometry for Slowly Cooled Samples Having a Distribution of Diffusion Domain Sizes. Journal of Geophysical Research: Solid Earth 94 (B12), 17917–17935. https://doi.org/10.1029/JB094iB12p17917.
23. Ludwig K.R., 2003. ISOPLOT/Ex: A Geochronological Toolkit for Microsoft Excel. Version 3.00. Berkeley Geochronology Center Special Publication 4, 74 p.
24. Lykhin D.A., Yarmolyuk V.V., Vorontsov A.A., Magazina L.O., 2024. Composition and Thermochronology of Alkaline Granites of the Inguri Massif: On the Problem of Identifying the Factors That Contributed to the Formation of Rare-Metal Mineralization in Alkaline Granites of Western Transbaikalia. Doklady Earth Sciences 516 (2), 964-975. https://doi.org/10.1134/S1028334X24601342.
25. Malyutina A.V., 2025. Petrogenesis of the Burpala Alkaline Syenite Massif (Northern Baikal Region). PhD Thesis (Candidate of Geology and Mineralogy). Novosibirsk, 132 p. (in Russian)
26. Malyutina A.V., Doroshkevich A.G., Starikova A.E., Izbrodin I.A., Prokop’ev I.R., Radomskaya T.A., Kruk M.N., 2025. Composition of Mafic Rock-Forming Minerals in the Rocks of the Burpala Alkaline Massif (Northern Baikal Area). Geology and Geophysics 66 (3), 299–315. https://doi.org/10.2113/RGG20244730.
27. Min K., Mundil R., Renne P.R., Ludwig K.R., 2000. A Test for Systematic Errors in 40Ar/39Ar Geochronology Through Comparison with U-Pb Analysis of a 1.1-Ga Rhyolite. Geochimica et Cosmochimica Acta 64 (1), 73–98. https://doi.org/10.1016/S0016-7037(99)00204-5.
28. Parsons I., Brown W.L., Smith J.V., 1999. 40Ar/39Ar Thermochronology Using Alkali Feldspars: Real Thermal History or Mathematical Mirage of Microtexture? Contributions to Mineralogy and Petrology 136, 92–110. https://doi.org/10.1007/s004100050526.
29. Portnov A.M., Nechaeva E.A., 1967. Nephelinization in the Сontact Zones of the Alkaline Burpala Massif. Bulletin of the USSR Academy of Sciences. Geological Series 5, 71–76 (in Russian)
30. Rampilova M.N., Rampilov M.O., Izbrodin I.A., 2022. Features of the Material Composition and Age of Alkaline Granites of the Ingursky Massif, Western Transbaikalia. Geodynamics and Tectonophysics 13 (4), 0647 (in Russian) https://doi.org/10.5800/GT-2022-13-4-0647.
31. Renne P.R., Mundil R., Balco G., Min K., Ludwig K.R., 2010. Joint Determination of 40K Decay Constants and 40Ar*/40K for the Fish Canyon Sanidine Standard, and Improved Accuracy for 40Ar/39Ar Geochronology. Geochimica et Cosmochimica Acta 74 (18), 5349–5367. https://doi.org/10.1016/j.gca.2010.06.017.
32. Rytsk E.Yu., Neimark L.A., Amelin Yu.V., 1998. Paleozoic Granitoids in the Northern Part of the Baikalian Orogenic Area: Age and Past Geodynamic Settings. Geotectonics 32 (5), 379–393.
33. Rytsk E.Yu., Velikoslavinskii S.D., Smyslov S.A., Kotov A.B., Glebovitskii V.A., Bogomolov E.S., Tolmacheva E.V., Kovach V.P., 2017. Geochemical Peculiarities and Sources of Late Paleozoic High-K and Ultrapotassic Syenite of the Synnyr and Tas Massifs (Eastern Siberia). Doklady Earth Sciences 476 (1), 1043–1047. https://doi.org/10.1134/S1028334X17090070.
34. Spikings R.A., Popov D.V., 2021. Thermochronology of Alkali Feldspar and Muscovite at T˃150 °C Using the 40Ar/39Ar Method: A Review. Minerals 11 (9), 1025. https://doi.org/10.3390/min11091025.
35. Starikova A.E., Malyutina A.V., Izbrodin I.A., Doroshkevich A.G., Radomskaya T.A., Isakova A.T., Semenova D.V., Korsakov A.V., 2024. Mineralogical, Petrographic and Geochemical Evidence for Zircon Formation Conditions Within the Burpala Massif, Northern Baikal Region. Geodynamics & Tectonophysics 15 (5), 0787 (in Russian) https://doi.org/10.5800/GT-2024-15-5-0787.
36. Steiger R.H., Jäger E., 1977. Subcommission on Geochronology: Convention on the Use of Decay Constants in Geo- and Cosmochronology. Earth and Planetary Science Letters 36 (3), 359–362. https://doi.org/10.1016/0012-821X(77)90060-7.
37. Stukel M., Hariasz L., Di Stefano P.C.F., Rasco B.C., Rykaczewski K.P., Brewer N.T., Stracener D.W., Liu Y. et al., 2023. Rare 40K Decay with Implications for Fundamental Physics and Geochronology. Physical Review Letters 131 (5), 052503. https://doi.org/10.1103/PhysRevLett.131.052503.
38. Travin A.V., Buslov M.M., Bishaev Yu.A., Tsygankov A.A., Mikheev E.I., 2023 Tectonothermal Evolution of Transbaikalia in the Late Paleozoic-Cenozoic: Thermochronology of the Angara-Vitim Granite Batholith. Geology and Geophysics 64 (9), 1086–1097. https://doi.org/10.2113/RGG20234577.
39. Tsygankov A.A., Burmakina G.N., Khubanov V.B., Buyantuev M.D., 2017. Geodynamics of Late Paleozoic Batholith Formation in Western Transbaikalia. Petrology 25 (4), 396–418. https://doi.org/10.1134/S0869591117030043.
40. Tsygankov A.A., Khubanov V.B., Burmakina G.N., Buyantuev M.D., 2023. Periodicity of Endogenic Events of West Transbaikalia and North Mongolia (Eastern Segment of the Central Asian Foldbelt): U-Pb Age of Detrital Zircon from the Present-Day River Sediments. Stratigraphy and Geological Correlation 31 (5), 355–375. https://doi.org/10.1134/S0869593823050088.
41. Tsygankov A.A., Litvinovsky B.A., Jahn B.M., Reichow M.K., Liu D.Y., Larionov A.N., Presnyakov S.L., Lepekhina Ye.N., Sergeev S.A., 2010. Sequence of Magmatic Events in the Late Paleozoic of Transbaikalia, Russia (U-Pb Isotope Data). Russian Geology and Geophysics 51 (9), 972–994. https://doi.org/10.1016/j.rgg.2010.08.007.
42. Tsygankov A.A., Matukov D.I., Berezhnaya N.G., Larionov A.N., Posokhov V.F., Tsyrenov B.Ts., Khromov A.A., Sergeev S.A., 2007. Late Paleozoic Granitoids of Western Transbaikalia: Magma Sources and Stages of Formation. Russian Geology and Geophysics 48 (1), 120–140. https://doi.org/10.1016/j.rgg.2006.12.011.
43. Villa I.M., Hanchar J.M., 2013. K-Feldspar Hygrochronology. Geochimica et Cosmochimica Acta 101, 24–33. https://doi.org/10.1016/j.gca.2012.09.047.
44. Vladykin N.V., Sotnikova I.A., 2017. Petrology, Mineralogical and Geochemical Features and Mantle Sources of the Burpala Rare-Metal Alkaline Massif, Northern Baikal Region. Geoscience Frontiers 8 (4), 711–719. https://doi.org/10.1016/j.gsf.2016.04.006.
45. Vladykin N.V., Sotnikova I.A., Kotov A.B., Yarmolyuk V.V., Salnikova E.B., Yakovleva S.Z., 2014. Structure, Age, and Ore Potential of the Burpala Rare-Metal Alkaline Massif, Northern Baikal Region. Geology Ore Deposits 56 (4), 239–256. https://doi.org/10.1134/S1075701514040060.
46. Yarmolyuk V.V., Budnikov S.V., Kovalenko V.I., Antipin V.S., Goreglyad A.V., Sal’nikova E.B., Kotov A.B., Kozakov I.V. et al., 1997. Geochronology and Geodynamic Setting of the Angara-Vitim Batholith. Petrology 5 (5), 401–414.
47. Yarmolyuk V.V., Kuzmin M.I., Ernst R.E., 2014. Intraplate Geodynamics and Magmatism in the Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 93, 158–179. https://doi.org/10.1016/j.jseaes.2014.07.004.
48. Zhidkov A.Ya., 1961. New Northern Baikal Alkaline Province and Some Features of Nepheline Content in Rocks. Doklady of the USSR Academy of Sciences 140 (1), 181–184 (in Russian) [Жидков А.Я. Новая Северо-Байкальская щелочная провинция и некоторые черты нефелиноносности пород // Доклады АН СССР. 1961. Т. 140. № 1. С. 181–184].
49. Zorin Yu.A., 1999. Geodynamics of the Western Part of the Mongolia-Okhotsk Collisional Belt, Trans-Baikal Region (Russia) and Mongolia. Tectonophysics 306 (1), 33–56. https://doi.org/10.1016/S0040-1951(99)00042-6.
Review
For citations:
Ponomarchuk A.V., Doroshkevich A.G., Izbrodin I.A., Malyutina A.V., Radomskaya T.A. 40Ar/39Ar DATING OF ALKALINE ROCKS FROM THE BURPALA MASSIF AS A KEY TO UNDERSTANDING ITS FORMATION DURATION. Geodynamics & Tectonophysics. 2025;16(5):0849. (In Russ.) https://doi.org/10.5800/GT-2025-16-5-0849