THE EARLY PRECAMBRIAN EFFECT OF OCEANIC CRUSTAL THICKNESS ON THE SUBDUCTION STYLE OBTAINED BY NUMERICAL PETROLOGICAL AND THERMOMECHANICAL MODELING
https://doi.org/10.5800/GT-2025-16-5-0844
EDN: https://elibrary.ru/doovjr
Abstract
Eclogitization of magmatic rocks in the oceanic crust plays a key role in the mechanism of the lithospheric plate movement. This effect (as well as its kinetic delay) is particularly important in the Precambrian subduction when oceanic crust could be several times thicker than today. This paper presents the results of numerical modeling of the Early Precambrian subduction beneath the continent, at elevated (by ΔT=150–250 °C relative to today’s) mantle potential temperature and different oceanic crustal thicknesses, based on discrete eclogitization of the rocks in the oceanic-crust basaltic and gabbroid layers, as well as on mantle depletion. The modeling has shown for the first time that the oceanic crustal thickness has a profound effect on the Precambrian subduction regime. The thick-crust (18–24 km) models exhibit flat subduction at all values of ΔT. The thin-crust (7 km) models show flat subduction only at ΔT=250 °C, whereas at ΔT=150–200 °C flat subduction is typical only for subduction initiation with a further flat to steep transition in subduction style, accompanied by processes of slab rollback and magmatism at an active margin with the dominance of acid magmatism over basite magmatism. These data imply that the present-day steep (or steep-like) subduction zones could occur in the Early Precambrian where the plates with thin (like today) oceanic crust were subducting.
Keywords
About the Authors
V. S. ZakharovRussian Federation
Vladimir S. Zakharov
1 Leninskie Gory, Moscow 119991
A. L. Perchuk
Russian Federation
1 Leninskie Gory, Moscow 119991; 4, Academician Osipyan St, Chernogolovka 142432
T. V. Gerya
Switzerland
5, Sonneggstrasse, 8092 Zurich, Switzerland
References
1. Arndt N., 2023. How Did the Continental Crust Form: No Basalt, No Water, No Granite. Precambrian Research 397, 107196, https://doi.org/10.1016/j.precamres.2023.107196.
2. Artemieva I.M., 2006. Global 1°×1° Thermal Model TC1 for the Continental Lithosphere: Implications for Lithosphere Secular Evolution. Tectonophysics 416 (1–4), 245–277. https://doi.org/10.1016/j.tecto.2005.11.022.
3. Bickle M.J., Nisbet E.G., Martin A., 1994. Archean Greenstone Belts Are Not Oceanic Crust. Journal of Geology 102 (2), 121–137. https://doi.org/10.1086/629658.
4. Bown J.W., White R.S., 1994. Variation with Spreading Rate of Oceanic Crustal Thickness and Geochemistry. Earth and Planetary Science Letters 121 (3–4), 435–449. https://doi.org/10.1016/0012-821X(94)90082-5.
5. Brown M., Johnson T., Gardiner N.J., 2020. Plate Tectonics and the Archean Earth. Annual Review of Earth and Planetary Sciences 48, 291–320. https://doi.org/10.1146/annurev-earth-081619-052705.
6. Cawood P.A., Hawkesworth C.J., Dhuime B., 2013. The Continental Record and the Generation of Continental Crust. Geological Society of America Bulletin 125 (1–2), 14–32. https://doi.org/10.1130/B30722.1.
7. Chen Y.J., 1992. Oceanic Crustal Thickness Versus Spreading Rate. Geophysical Research Letters 19 (8), 753–756. https://doi.org/10.1029/92GL00161.
8. Clift P., Vannucchi P., 2004. Controls on Tectonic Accretion Versus Erosion in Subduction Zones: Implications for the Origin and Recycling of the Continental Crust. Reviews of Geophysics 42 (2), RG2001. https://doi.org/10.1029/2003RG000127.
9. Coleman R.G., 1979. Ophiolites. Mir Publishing House, Moscow, 262 p. (in Russian)
10. Davies G.F., 2006. Gravitational Depletion of the Early Earth’s Upper Mantle and the Viability of Early Plate Tectonics. Earth and Planetary Science Letters 243 (3–4), 376–382. https://doi.org/10.1016/j.epsl.2006.01.053.
11. Davies J.H., 1999. The Role of Hydraulic Fractures in Generating Intermediate Depth Earthquakes and Subduction Zone Magmatism. Nature 398, 142–145. https://doi.org/10.1038/18202.
12. De Silva S.L., Kay S.M., 2018. Turning up the Heat: High-Flux Magmatism in the Central Andes. Elements 14 (4), 245–250. https://doi.org/10.2138/gselements.14.4.245.
13. Dilek Y., Furnes H., 2014. Ophiolites and Their Origins. Elements 10 (2), 93–100. https://doi.org/10.2113/gselements.10.2.93.
14. Dobretsov N.L., 2010. Distinctive Petrological, Geochemical, and Geodynamic Features of Subduction-Related Magmatism. Petrology 18 (1), 84–106. https://doi.org/10.1134/S0869591110010042.
15. Dubinin E.P., Galushkin Yu.I., Sushchevskaya N.M., 2013. Spreading Ridges and Transform Faults. In: L.I. Lobkovsky (Ed.), The World Ocean. Geology and Tectonics of the Ocean. Catastrophic Phenomena in the Ocean. Vol. 1. Nauchny Mir, Moscow, p. 92–170 (in Russian)
16. Gerya T., 2014. Precambrian Geodynamics: Concepts and Models. Gondwana Research 25 (2), 442–463. https://doi.org/10.1016/j.gr.2012.11.008.
17. Gerya T.V., Yuen D.A., 2003. Characteristics-Based Marker-in-Cell Method with Conservative Finite-Differences Schemes for Modeling Geological Flows with Strongly Variable Transport Properties. Physics of the Earth and Planetary Interiors 140 (3), 293–318. https://doi.org/10.1016/j.pepi.2003.09.006.
18. Herzberg C., Condie K., Korenaga J., 2010. Thermal History of the Earth and Its Petrological Expression. Earth and Planetary Science Letters 292 (1–2), 79‒88. https://doi.org/10.1016/j.epsl.2010.01.022.
19. Katz R.F., Spiegelman M., Langmuir C.H., 2003. A New Parameterization of Hydrous Mantle Melting. Geochemistry, Geophysics, Geosystems 4 (9), 1073. https://doi.org/10.1029/2002GC000433.
20. Kirdyashkin A.A., Kirdyashkin A.G., Distanov V.E., Gladkov I.N., 2021. On Heat Source in Subduction Zone. Geodynamics & Tectonophysics 12 (3), 471–484 (in Russian) https://doi.org/10.5800/GT-2021-12-3-0534.
21. Korenaga J., 2013. Initiation and Evolution of Plate Tectonics on Earth: Theories and Observations. Annual Review of Earth and Planetary Sciences 41, 117–151. https://doi.org/10.1146/annurev-earth-050212-124208.
22. Korobeynikov S.N., Polyansky O.P., Sverdlova V.G., Babichev A.V., Reverdatto V.V., 2008. Computer Modeling of Underthrusting and Subduction Under Conditions of Gabbro-Eclogite Transition in the Mantle. Doklady Earth Sciences 421 (1), 724–728. https://doi.org/10.1134/S1028334X08050024.
23. Labrosse S., Jaupart C., 2007. Thermal Evolution of the Earth: Secular Changes and Fluctuations of Plate Characteristics. Earth and Planetary Science Letters 260 (3–4), 260–465. https://doi.org/10.1016/j.epsl.2007.05.046.
24. Li Z.H., Xu Z.Q., Gerya T.V., 2011. Flat Versus Steep Subduction: Contrasting Modes for the Formation and Exhumation of High- to Ultrahigh-Pressure Rocks in Continental Collision Zones. Earth and Planetary Science Letters 301 (1–2), 65–77. https://doi.org/10.1016/j.epsl.2010.10.014.
25. Liu L., Gurnis M., Seton M., Saleeby J., Müller R.D., Jackson J.M., 2010. The Role of Oceanic Plateau Subduction in the Laramide Orogeny. Nature Geoscience 3 (5), 353–357. https://doi.org/10.1038/ngeo829.
26. Lobkovsky L.I., Nikishin A.M., Khain V.E., 2004. Current Problems of Geotectonics and Geodynamics. Nauchny Mir, Moscow, 612 p. (in Russian)
27. Lobkovsky L.I., Ramazanov M.M., Kotelkin V.D., 2021. Convection Related to Subduction Zone and Application of the Model to Investigate the Cretaceous-Cenozoic Geodynamics of Central East Asia and the Arctic. Geodynamics & Tectonophysics 12 (3), 455–470 (in Russian) https://doi.org/10.5800/GT-2021-12-3-0533.
28. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.
29. McKenzie D.A.N., Bickle M.J., 1988. The Volume and Composition of Melt Generated by Extension of the Lithosphere. Journal of Petrology 29 (3), 625–679. https://doi.org/10.1093/petrology/29.3.625.
30. Moyen J.-F., van Hunen J., 2012. Short-Term Episodicity of Archaean Plate Tectonics. Geology 40 (5), 451–454. https://doi.org/10.1130/G322894.1.
31. Palin R.M., Santosh M., 2021. Plate Tectonics: What, Where, Why, and When? Gondwana Research 100, 3–24. https://doi.org/10.1016/j.gr.2020.11.001.
32. Palin R.M., Santosh M., Cao W., Li Sh.-Sh., Hernández-Uribe D., Parsons A., 2020. Secular Change and the Onset of Plate Tectonics on Earth. Earth-Science Reviews 207, 103172. https://doi.org/10.1016/j.earscirev.2020.103172.
33. Perchuk A.L., Gerya T.V., Zakharov V.S., Griffin W.L., 2021. Depletion of the Upper Mantle by Convergent Tectonics in the Early Earth. Scientific Reports 11, 21489. https://doi.org/10.1038/s41598-021-00837-y.
34. Perchuk A.L., Zakharov V.S., Gerya T.V., Brown M., 2019. Hotter Mantle but Colder Subduction in the Precambrian: What Are the Implications? Precambrian Research 330, 20–34. https://doi.org/10.1016/j.precamres.2019.04.023.
35. Perchuk A.L., Zakharov V.S., Gerya T.V., Griffin W.L., 2023. Flat Subduction in the Early Earth: The Key Role of Discrete Eclogitization Kinetics. Gondwana Research 119, 186–203. https://doi.org/10.1016/j.gr.2023.03.015.
36. Perchuk A.L., Zakharov V.S., Gerya T.V., Griffin W.L., 2025a. Felsic Magmatism During Precambrian Flat Subduction. Geoscience Frontiers 16 (6), 102133. https://doi.org/10.1016/j.gsf.2025.102133.
37. Perchuk A.L., Zakharov V.S., Gerya T.V., Stern R.J., 2025b. Shallow vs. Deep Subduction in Earth History: Contrasting Regimes of Water Recycling Into the Mantle. Precambrian Research 418, 107690. https://doi.org/10.1016/j.precamres.2025.107690.
38. Ranalli G., 1995. Rheology of the Earth. Chapman & Hall, London, 413 p.
39. Rebetskiy Yu.L., 2020. Pattern of Global Crustal Stresses of the Earth. Geotectonics 54 (6), 723–740. https://doi.org/10.1134/S0016852120060114.
40. Savko К.А., Samsonov А.V., Korish Е.Kh., Larionov А.N., Salnikova Е.B., Ivanova А.А., Bazikov N.S., Tsybulyaev S.V., Chervyakovskaya М.V., 2024. Granitoid Intrusions at the Periphery of the Kursk Block as Part of a Paleoproterozoic Silicic Large Igneous Province in Eastern Sarmatia. Petrology 32 (6), 719–771. https://doi.org/10.1134/S0869591124700218.
41. Schmidt M.W., Poli S., 1998. Experimentally Based Water Budgets for Dehydrating Slabs and Consequences for Arc Magma Generation. Earth and Planetary Science Letters 163 (1–4), 361–379. https://doi.org/10.1016/S0012-821X(98)00142-3.
42. Shchipansky A.A., 2012. Subduction Geodynamics in Archean and Formation of Diamond-Bearing Lithospheric Keels and Early Continental Crust of Cratons. Geotectonics 46 (2), 122–141. https://doi.org/10.1134/S0016852112020057.
43. Sizova E., Gerya T., Brown M., Perchuk L.L., 2010. Subduction Styles in the Precambrian: Insight from Numerical Experiments. Lithos 116 (3–4), 209–229. https://doi.org/10.1016/j.lithos.2009.05.028.
44. Sleep N.H., 1975. Formation of Oceanic Crust: Some Thermal Constraints. Journal of Geophysical Research 80 (29), 4037–4042. https://doi.org/10.1029/JB080i029p04037.
45. Su W., Mutter C.Z., Mutter J.C., Buck W.R., 1994. Some Theoretical Predictions on the Relationships Among Spreading Rate, Mantle Temperature, and Crustal Thickness. Journal of Geophysical Research: Solid Earth 99 (B2), 3215–3227. https://doi.org/10.1029/93JB02965.
46. Syracuse E.M., van Keken P.E., Abers G.A., 2010. The Global Range of Subduction Zone Thermal Models. Physics of the Earth and Planetary Interiors 183 (1–2), 73–90. https://doi.org/10.1016/j.pepi.2010.02.004.
47. Tang M., Chen K., Rudnick R.L., 2016. Archean Upper Crust Transition from Mafic to Felsic Marks the Onset of Plate Tectonics. Science 35 (6271), 372–375. https://doi.org/10.1126/science.aad5513.
48. Till C.B., Grove T.L., Withers A.C., 2012. The Beginnings of Hydrous Mantle Wedge Melting. Contributions to Mineralogy and Petrology 163 (4), 669–688. https://doi.org/10.1007/s00410-011-0692-6.
49. Trubitsyn V.P., 2019. Problems of Global Geodynamics. Izvestiya, Physics of the Solid Earth 55 (2), 152–167. https://doi.org/10.1134/S1069351319010129.
50. Trubitsyn V.P., Baranov A.A., Kharybin E.V., 2007. Numerical Models of Subduction of the Oceanic Crust with Basaltic Plateaus. Izvestiya, Physics of the Solid Earth 43 (7), 533–542. https://doi.org/10.1134/S1069351307070014.
51. Turcotte D.L., Schubert G., 2014. Geodynamics. Cambridge University Press, Cambridge, 626 p.
52. Van Hunen J., van den Berg A.P., 2008. Plate Tectonics on the Early Earth: Limitations Imposed by Strength and Buoyancy of Subducted Lithosphere. Lithos 103 (1–2), 217–235. https://doi.org/10.1016/j.lithos.2007.09.016.
53. Weller O.M., Copley A., Miller W.G.R., Palin R.M., Dyck B., 2019. The Relationship Between Mantle Potential Temperature and Oceanic Lithosphere Buoyancy. Earth and Planetary Science Letters 518, 86–99. https://doi.org/10.1016/j.epsl.2019.05.005.
54. Zakharov V.S., Perchuk A.L., Gerya T.V., Eremin M.D., 2024. Subduction Styles at Different Stages of Geological History of the Earth: Results of Numerical Petrological-Thermomechanical 2D Modeling. Geotectonics 58 (4), 403–427. https://doi.org/10.1134/S0016852124700298.
55. Zhou D., Li Ch.-F., Zlotnik S., Wang J., 2020. Correlations Between Oceanic Crustal Thickness, Melt Volume, and Spreading Rate from Global Gravity Observation. Marine Geophysical Research 41 (3), 14. https://doi.org/10.1007/s11001-020-09413-x.
Review
For citations:
Zakharov V.S., Perchuk A.L., Gerya T.V. THE EARLY PRECAMBRIAN EFFECT OF OCEANIC CRUSTAL THICKNESS ON THE SUBDUCTION STYLE OBTAINED BY NUMERICAL PETROLOGICAL AND THERMOMECHANICAL MODELING. Geodynamics & Tectonophysics. 2025;16(5):0844. (In Russ.) https://doi.org/10.5800/GT-2025-16-5-0844. EDN: https://elibrary.ru/doovjr