THE NATURE OF ZINC CHROMITES FROM BANDED ILMENITE-HEMATITE QUARTZ SANDSTONE OF THE BEZYMYANNAYA FORMATION OF THE TUVA-MONGOLIAN TERRANE (SOUTHEASTERN PART OF THE EAST SAYAN, RUSSIA)
https://doi.org/10.5800/GT-2025-16-4-0834
EDN: HSPHPE
Abstract
The paper presents the first data on detrital zinc chromites from banded ilmenite-hematite sandstone of the terrigenous Bezymyannaya formation of the Tuva-Mongolian terrane in the eastern part of the East Sayan. The zinc content of the accessory and ore chromites from the ophiolite complexes in the southeastern part of the East Sayan is not high and falls within the range of 0.2 to 1.5 wt. % ZnO. Scanning electronic microscopy has been used to study morphological and structural features and chemical composition of detrital zinc chromites. The study of chemical composition of mineral phases of titanium-ferruginous oxide interlayers, composed of ilmenohematite, Ti-hematite, pseudobrookite, pseudorutile and zinc chromite, has shown that Zn (12–27 wt. % ZnO) is present only in chromite and entirely absent in other ore minerals, i.e. that zinc enrichment in chromite is a feature of the ore body rather than the result of metamorphism or metensomatoses of terrigenous rocks in the source area. The ore bodies of the studied detrital chromites are associated with ultrabasites and basites, their metasomatized varieties, and podiform chromites from the ophiolite complexes in the southeastern part of the East Sayan. Metasomatic changes of mantle peridotites and chromitites and the effects of fluid/hydrothermal solution parameters resulted in substitution of Mg by Zn in the chromite. Zinc could originate from the subducting-slab rocks – volcanic-sedimentary rocks containing the fragments of submarine hydrothermal sulfide ore deposits, zinc-enriched and involved in metasomatic changes of peridotites and chromites.
Keywords
About the Authors
O. N. KiselevaRussian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
D. K. Belyanin
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
1 Pirogov St, Novosibirsk 630090
E. V. Airiyants
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
S. M. Zhmodik
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
Yu. I. Kulikov
Russian Federation
Khakhalov St, Ulan-Ude 670034, Republic of Buryatia
P. A. Roshchektaev
Russian Federation
24a Smolin St, Ulan-Ude 670000, Republic of Buryatia
References
1. Anderson Т.В., 1974. The Relationship Between Kinkbands and Shear Fractures in the Experimental Deformation of Slate. Journal of the Geological Society 130 (4), 367–382. https://doi.org/10.1144/gsjgs.130.4.0367.
2. Arai Sh., Ishimaru S., 2011. Zincian Chromite Inclusions in Diamonds: Possibility of Deep Recycling Origin. Journal of Mineralogical and Petrological Sciences 106 (2), 85–90. https://doi.org/10.2465/jmps.101014.
3. Arai Sh., Miura M., Tamura A., Akizawa N., Ishikawa A., 2020. Hydrothermal Chromitite from the Oman Ophiolite: The Role of Water in Chromite Genesis. Minerals 10 (3), 217. https://doi.org/10.3390/min10030217.
4. Barnes S.J., 2000. Chromite in Komatiites, II. Modification During Greenschist to Mid-Amphibolite Facies Metamorphism. Journal of Petrology 41 (3), 387–409. https://doi.org/10.1093/petrology/41.3.387.
5. Baswani S.R., Mishra B.P., Mahapatro S.N., Meshram T., Pati P., Shareef M., Korakoppa M., Mishra M. et al., 2022. Petrochemical Evaluation of Gahnite from Volcanogenic Massive Sulfide Deposits in Betul Belt, Central India: Insight from Petrography and In-Situ Trace Element Geochemistry. Geological Journal 57 (11), 4508–4528. https://doi.org/10.1002/gj.4555.
6. Challis A., Grapes R., Palmer K., 1995. Chromian Muscovite, Uvarovite, and Zincian Chromite: Products of Regional Metasomatism in Northwest Nelson, New Zealand. The Canadian Mineralogist 33 (6), 1263–1284.
7. Damdinov B.B., Zhmodik S.M., Roshchektaev P.A., Damdinova L.B., 2016. Composition and Genesis of the Konevinsky Gold Deposit, Eastern Sayan, Russia. Geology of Ore Deposits 58, 134–148. https://doi.org/10.1134/S1075701516020033.
8. Dobretsov N.L., Ignatovich V.I. (Eds), 1988. Geology and Metamorphism of the East Sayan. Nauka, Novosibirsk, 192 p. (in Russian)
9. Eccles D.R., Heaman L.M., Luth R.W., Creaser R.A., 2004. Petrogenesis of the Late Cretaceous Northern Alberta Kimberlite Province. Lithos 76 (1–4), 435–459. https://doi.org/10.1016/j.lithos.2004.03.046.
10. Fanlo I., Gervilla F., Colás V., Subías I., 2015. Zn-, Mnand Co-Rich Chromian Spinels from the Bou-Azzer Mining District (Morocco): Constraints on Their Relationship with the Mineralizing Process. Ore Geology Reviews 71, 82–98. https://doi.org/10.1016/j.oregeorev.2015.05.006.
11. Gao S., Campbell K., Flemming R.L., Armstrong K., Kupsch B., 2023. Characterizing Zinc-Rich Chromite Cores and Uvarovite-Grossular Garnet Mantles from the Pikoo Property, Central Eastern Saskatchewan, Canada. The Canadian Journal of Mineralogy and Petrology 61 (4), 767–785. https://doi.org/10.3749/2200052.
12. Glukhov Yu.V., Makeev V.A., Varlamov D.A., Shevchuk S.S., Isaenko S.I., 2015. Chromspinelides with Zink-Bearing Epigene Rims from Devonian Conglobreccia Horizons of Ichetyu Placer-Like Occurrence (Middle Timan). Lithoshere 2, 103–120 (in Russian)
13. Johan Z., Ohnenstetter D., 2010. Zincochromite from the Guaniamo River Diamondiferous Placers, Venezuela: Evidence of Its Metasomatic Origin. The Canadian Mineralogist 48 (2), 361–374. https://doi.org/10.3749/canmin.48.2.361.
14. Kiseleva O., Zhmodik S., 2017. PGE Mineralization and Melt Composition of Chromitites in Proterozoic Ophiolite Complexes of Eastern Sayan, Southern Siberia. Geoscience Frontiers 8 (4), 721–731. https://doi.org/10.1016/j.gsf.2016.04.003.
15. Kiseleva O.N., Airiyants E.V., Belyanin D.K., Zhmodik S.M., 2020. Podiform Chromitites and PGE Mineralization in the Ulan-Sar’dag Ophiolite (East Sayan, Russia). Minerals 10 (2), 141. https://doi.org/10.3390/min10020141.
16. Kiseleva O.N., Ayriyants E.V., Zhmodik S.M., Belyanin D.K., 2024. Sulfide and Selenide PGE Mineralization in Chromitites of the Dunzhugur Ophiolite Massif (East Sayan, Russia). Geology of Ore Deposits 66, 225–248. https://doi.org/10.1134/S1075701523600330.
17. Kovalev K.P., Kalinin Yu.A., Lobanov K.V., Naumov E.A., Borovikov A.A., Sukhorukov V.P., 2023 The Gorevskoe Pb-Zn Deposit (Siberia, Russia): Mineral Composition and Features of Ore Mineralization. Geology of Ore Deposits 65 (4), 283–314. https://doi.org/10.1134/s1075701523030029.
18. Kulikov Yu.I., 1994. Diamond Potential of the Ospinsky Massif (Eastern Sayan). Report on the Results of Diamond Searches by the Samartinsky Party for 1988–1991 and the Ospinsky Party for 1992–1993. Buryatgeology, Ulan-Ude, 127 p. (in Russian)
19. Kuzmichev A.B., 2015. Neoproterozoic Accretion of the Tuva Mongolian Massif, One of the Precambrian Terranes in the Central Asian Orogenic Belt. In: A. Kröner (Ed.), Composition and evolution of Central Asian Orogenic Belt: Geology, Evolution, Tectonics, and Models. Borntraeger Science Publishers, Stuttgart, p. 66–92.
20. Kuzmin I.A., Palamarchuk R.S., Kalugin V.M., Kozlov A.V., Varlamov D.A., 2020. Chromite-Platinum Mineralization of Clinopyroxenite-Dunite Massif Zheltaya Sopka, North Ural. Mineralogy 6 (4), 46–59 (in Russian) https://doi.org/10.35597/2313-545X-2020-6-4-3.
21. Lyutkevich A.D., Gablina I.F., Dara O.M., Yapaskurt V.O., Shcherbakov V.D., Somov P.A., 2022. Mineral Phases of Zinc in Ore-Bearing Sediments of the Pobeda Hydrothermal Cluster (17°07.45'–17°08.7' N MAR). Lithology and Mineral Resources 57, 404–420. https://doi.org/10.1134/S0024490222050042.
22. Makeev A.B., Lebedev V.A., Bryanchininova N.I., 2008. Magmatiсs of Middle Timan. UB RAS, Ekaterinburg, 348 p. (in Russian)
23. Makeev A.B., Makeev B.A., 2005. Zn-Chromspinels of Middle Timan and the Near-Polar Urals. Doklady Earth Sciences 404 (7), 1078–1083.
24. Murzin V.V., Varlamov D.A., Palyanova G.A., Zhuravkova T.V., 2016. Gold-Bearing Rodingites in the Agardak Massif of Hyperbasites (Southern Tuva). In: Metallogenesis of Ancient and Modern Oceans – 2016. From Mineralogenesis to Deposits. Proceedings of the XXII Scientific Youth School (April 25–29, 2016). Institute of Mineralogy UB RAS, Miass, p. 201–204 (in Russian)
25. Novoselov K.A., Belogub E.V., Blinov I.A., Artem’ev D.A., 2023. Detrital Chrome Spinels of the Udokan Sedimentary Basin in Transbaikalia. Russian Geology and Geophysics 65 (5), 609–622. https://doi.org/10.2113/rgg20234632.
26. Nugumanova Ya.N., Doroshkevich A.G., 2022. Composition of Spinel Group Minerals from Late Proterozoic Ultramafic Lamprophyres of the Bolshetagninskii Alkaline Ultramafic Carbonatite Complex Located at the Urik-Iya Graben, Eastern Sayan Region. Geodynamics & Tectonophysics 13 (4), 0656 (in Russian) https://doi.org/10.5800/GT-2022-13-4-0656.
27. Onishchenko S.A., 2011. Chromium Minerals in the Deposits of the Alkesvozh Suite on the Maldynyrd Ridge. In: Mineral Indicators of Lithogenesis. Proceedings of the Russian Meeting with International Participation (March 14–17, 2011). Geoprint, Syktyvkar, p. 114–117 (in Russian)
28. Onishchenko S.A., Kuznetsov S.K., Tropnikov E.M., 2022. Mineral Phases of the Pd-Bi-Se System in the Ores at the Chudnoe Au-Pd Deposit (Subpolar Urals, Russia). Doklady Earth Sciences 504, 266–270. https://doi.org/10.1134/S1028334X22050117.
29. Pal D.C., Sarkar B.Ch., Ghosh S., Sen R., Jana A., Mukhopadhyay S., Sinha D.K., 2022. Geochemistry of Detrital Zinc-Rich Chromite in Conglomerates from Eastern India. Mineralogical Magazine 86 (2), 1–8. https://doi.org/10.1180/mgm.2022.12.
30. Pavlov N.V., Kravchenko G.G., Chuprynina I.I., 1968. Chromites of the Kempirsai Pluton. Nauka, Moscow, 179 p. (in Russian)
31. Pekov I.V., Agakhanov A.A., Zubkova N.V., Koshlyakova N.N., Shchipalkina N.V., Sandalov F.D., Yapaskurt V.O., Turchkova A.G., Sidorov E.G., 2020. Oxidizing-Type Fumaroles of the Tolbachik Volcano, a Mineralogical and Geochemical Unique. Russian Geolology and Geophysics 61 (5–6), 675–688. https://doi.org/10.15372/RGG2019167.
32. Reznitsky L.Z., Sklyarov E.V., Barash I.G., 2023. Metamorphic Vanadian-Chromian Spinel (Sludyanka Complex, South Baikal Area). Ferroan Spinel. Russian Geology and Geophysics 64 (4), 407–423. https://doi.org/10.2113/rgg20224473.
33. Saryg-ool B.Yu., Bukreeva L.N., Myagkaya I.N., Tolstov A.V., Lazareva E.V., Zhmodik S.M., 2020. Influence of Sample Pretreatment on the Analysis of High Contents of Rare-Earth and High Field Strength Elements in Geological Samples by ICP-AES and ICP-MS (Case Study of the Tomtor Deposit). Journal of Siberian Federal University. Chemistry 13 (4), 593–605 (in Russian) https://doi.org/10.17516/1998-2836-0208.
34. Shutov V.A., Mekhonoshin A.S., Kolotilina T.B., 2024. Nephrite Formation Processes at the Contact of Serpentinites with Plagiorhyolite-Porphyries of the Ulan-Khodinsky Deposit, Eastern Sayans, Russia. Geosphere Research 2, 101–116 (in Russian) DOI:10.17223/25421379/31/6.
35. Sklyarov E.V., Kovach V.P., Kotov A.B., Kuzmichev A.B., Lavrenchuk A.V., Perelyaev V.I., Shchipansky A.A., 2016. Boninites and Ophiolites: Problems of Their Relations and Petrogenesis of Boninites. Russian Geology and Geophysics 57 (1), 127–140. https://doi.org/10.1016/j.rgg.2016.01.009.
36. Spiridonov E.M., Pletnev P.A., 2002. Zolotaya Gora Copper Gold Deposit (About "Gold-Rodingite" Formation). Nauchny Mir, Moscow, 220 p. (in Russian)
37. Spiridonov E.M., Sidorova N.V., Nurmukhametov F.M., Korotaeva N.N., Kulikova I.M., Polenov Yu.A., Troshkina A.N., 2014. Listvenite-like Apopicritic Phlogopite-Magnesite Gumbeites of the Berezovskoye Gold Deposit with Zircon, Monazite, Ksenotime, Fluorine-Apatite, Tourmaline, Relic Zinc-Chromium. Uralian Geological Journal 1 (97), 20–67 (in Russian)
38. Staddon L.G., Parkinson I.J., Cavosie A.J., Elliott T., Valley J.W., Fournelle J., Kemp A.I.S., Shirey S.B., 2021. Detrital Chromite from Jack Hills, Western Australia: Signatures of Metamorphism and Constraints on Provenance. Journal of Petrology 62 (12), egab052. https://doi.org/10.1093/petrology/egab052.
39. State Geological Map of the Russian Federation, 2021. East Sayan Series. Scale of 1:200000. Sheet N-47-XXXV (Sorok). Explanatory Note. Moscow Branch of VSEGEI, Moscow, 218 p. (in Russian)
40. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell Scientific Publication, Oxford, 312 p.
41. Thayer T.P., Milton Ch., Dinnin J., Rose H.Jr., 1964. Zincian Chromite from Outokumpu, Finland. American Mineralogist 49 (9–10), 1178–1183.
42. Vikent’ev I.V., Moloshag V.P., Yudovskaya M.A., 2006. Speciation of Noble Metals and Conditions of Their Concentration in Massive Sulfide Ores of the Urals. Geology of Ore Deposits 48 (2), 77–107. https://doi.org/10.1134/S1075701506020012.
43. Weiser T.W., Hirdes W., 1997. Zinc-Rich Chromite from Paleoproterozoic Conglomerates at Tarkwa Gold Mine, Ghana. The Canadian Mineralogist 35 (3), 587–595.
44. Wylie A.G., Candela P.A., Burke T.M., 1987. Compositional Zoning in Unusual Zn-Rich Chromite from the Sykesville District of Maryland and Its Bearing on the Origin of "Ferritchromit". American Mineralogist 72 (3–4), 413–422.
45. Zhmodik S.M., Postnikov A.A., Buslov M.M., Mironov A.G., 2006. Geodynamics of the Sayan-Baikal-Muya Accretion-Collision Belt in the Neoproterozoic – Early Paleozoic and Regularities of the Formation and Localization of Precious-Metal Mineralization. Geology and Geophysics 47 (1), 183–197 (in Russian)
Review
For citations:
Kiseleva O.N., Belyanin D.K., Airiyants E.V., Zhmodik S.M., Kulikov Yu.I., Roshchektaev P.A. THE NATURE OF ZINC CHROMITES FROM BANDED ILMENITE-HEMATITE QUARTZ SANDSTONE OF THE BEZYMYANNAYA FORMATION OF THE TUVA-MONGOLIAN TERRANE (SOUTHEASTERN PART OF THE EAST SAYAN, RUSSIA). Geodynamics & Tectonophysics. 2025;16(4):0834. (In Russ.) https://doi.org/10.5800/GT-2025-16-4-0834. EDN: HSPHPE