Preview

Geodynamics & Tectonophysics

Advanced search

PYROXENE AND GARNET MEGACRYSTS IN THE MAGMATIC SYSTEM AND MANTLE OF THE TESIINGOL VOLCANIC FIELD IN NORTHERN MONGOLIA

https://doi.org/10.5800/GT-2025-16-3-0828

EDN: wkhsnk

Abstract

Studies have been made on pyroxene (Cpx) and garnet (Grt) megacrysts from the rocks related to two-stage formation of the Tesiingol volcanic field in Northern Mongolia. The rocks related to the initial stage of the volcanic field formation, basanites and phonotephrites of the Early Miocene Bod-Uul volcano (40Ar/39Ar, 17.0±0.5 Ma), do not contain xenogenic material. Megacrysts and associated peridotite and pyroxenite xenoliths were discovered in eruptive deposits and lavas of basaltic trachyandesites of the Middle Miocene Uguumur volcano (40Ar/39Ar, 12.5±0.2 Ma) at the second stage of activity. The volcanic field rocks show the presence of carbonate matter. Cpx and Grt megacrysts have traces of melting and transformation and are associated with sanidine, ilmenite and apatite megacrysts. Pyroxenes have elevated contents of Al and Na and are similar in composition to omphacites (Di71–72Jd16–19Ae9–12). Garnets are characterized by chromium-free almandine-grossular-pyrope composition (Alm58–66Grs17–20Pyr14–19) and correspond to minerals of eclogite paragenesis. Pyroxene megacrysts, compared in composition to pyroxenes from eclogites and peridotites, are enriched in REE, Y, Nb, Ta and Hf. Garnets show relatively high contents of LREE, Zr and Hf. It has been found that the early-­stage basanite and phonotephrite magmas were formed in the asthenospheric mantle at 21–28 kbar and 1359–1432 °C. The formation of basaltic trachyandesite melts occurred near the crust and upper mantle at 10–13 kbar and 1192–1237 °C. Megacrysts of the Cpx+Grt association crystallized at 20–24 kbar and 1190–1331 °C in the area of the garnet facies of the lithospheric mantle depth and near its boundary with the asthenosphere. Based on the data for P-T formation conditions, crystal chemistry, trace element and isotopic composition of Cpx and Grt megacrysts, a model of the origin of the latter has been proposed. It is suggested that megacrysts formed above the deep magma chamber as a result of the process similar to pneumatolytic, due to the separation and subsequent crystallization of a silicate-carbonate phase above the solidus of carbonated peridotites, mainly in the lithospheric mantle.

About the Authors

A. P. Zhgilev
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



A. B. Perepelov
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



S. S. Tsypukova
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



Yu. D. Shcherbakov
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033



A. A. Karimov
Vinogradov Institute of Geochemistry, Siberian Branch of the Russian Academy of Sciences; Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

1а Favorsky St, Irkutsk 664033

128 Lermontov St, Irkutsk 664033



References

1. Abbott R.N., 2018. Trace Element Thermometry of Garnet-Clinopyroxene Pairs, Revisited. American Mineralogist 103 (7), 1169–1171. https://doi.org/10.2138/am-2018-6487.

2. Akinin V.V., Sobolev A.V., Ntaflos T., Richter W., 2005. Clinopyroxene Megacrysts from Enmelen Melanephelinitic Volcanoes (Chukchi Peninsula, Russia): Application to Composition and Evolution of Mantle Melts. Contributions to Mineralogy and Petrology 150, 85–101. https://doi.org/10.1007/s00410-005-0007-x.

3. Ancuta L.D., Zeitler P.K., Idleman B.D., Jordan B.T., 2018. Whole-Rock 40Ar/39Ar Geochronology, Geochemistry, and Stratigraphy of Intraplate Cenozoic Volcanic Rocks, Central Mongolia. GSA Bulletin 130 (7–8), 1397–1408. https://doi.org/10.1130/B31788.1.

4. Aoki K.I., Shiba I., 1973. Pyroxenes from Lherzolite Inclusions of Itinome-Gata, Japan. Lithos 6 (1), 41–51. https://doi.org/10.1016/0024-4937(73)90078-9.

5. Aseeva A., Avchenko O., Karabtsov A., Chashchin A., Vysotskiy S., Yakovenko V., Zarubina N., Kharitonova N., 2021. Melt Pockets in Garnet Megacrysts from Cenozoic Alkali Basalts of the Savaryn-Tsaram Vicinity, Mongolia. Acta Geologica Sinica 96 (1), 111–122. https://doi.org/10.1111/1755-6724.14768.

6. Ashchepkov I.V., André L., Downes H., Belyatsky B.A., 2011. Pyroxenites and Megacrysts from Vitim Picrite– Basalts (Russia): Polybaric Fractionation of Rising Melts in the Mantle? Journal of Asian Earth Sciences 42 (1–2), 14–37. https://doi.org/10.1016/j.jseaes.2011.03.004.

7. Carlson R.W., Ionov D.A., 2019. Compositional Characteristics of the MORB Mantle and Bulk Silicate Earth Based on Spinel Peridotites from the Tariat Region, Mongolia. Geochimica et Cosmochimica Acta 257, 206–223. https://doi.org/10.1016/j.gca.2019.05.010.

8. Demonterova E.I., Ivanov A.V., Palessky S.V., Posokhov V.F., Karmanov N.S., Pel’gunova L.A., 2023. Feldspar Megacrysts as a Source of Information on Crustal Contamination of Basaltic Melt Geochemistry International 61, 669–686. https://doi.org/10.1134/S0016702923070029.

9. Dobosi G., Downes H., Embey-Isztin A., Jenner G.A., 2002. Origin of Megacrysts and Pyroxenite Xenoliths from the Pliocene Alkali Basalts of the Pannonian Basin (Hungary). Journal of Mineralogy and Geochemistry 178 (3), 217–237. https://doi.org/10.1127/0077-7757/2003/0178-0217.

10. Genshaft Yu.S., Saltykovsky A.Ya., 1990. The Catalog of Deep-Seated Rock and Mineral Inclusions in Basalts of Mongolia. Nauka, Moscow, 67 p. (in Russia)

11. Gornova M.A., Belyaev V.A., Karimov A.A., Perepelov A.B., Dril S.I., 2023. Chemical Modification of Lherzolite Xenoliths Due to Interaction with Host Basanite Melt: Evidence from Tumusun Volcano, Baikal Rift Zone. Minerals 13 (3), 403. https://doi.org/10.3390/min13030403.

12. Gose J., Schmädicke E., 2021. H2O in Omphacite of Quartz and Coesite Eclogite from Erzgebirge and Fichtelgebirge, Germany. Journal of Metamorphic Geology 40 (4), 665–686. https://doi.org/10.1111/jmg.12642.

13. Grütter H.S., Gurney J.J., Menzies A.H., Winter F., 2004. An Updated Classification Scheme for Mantle-Derived Garnet, for Use by Diamond Explorers. Lithos 77 (1–4), 841–857. https://doi.org/10.1016/j.lithos.2004.04.012.

14. Gudfinnsson G.H., Presnall D.C., 2005. Continuous Gradations Among Primary Carbonatitic, Kimberlitic, Melilititic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa. Journal of Petrology 46 (8), 1645–1659. https://doi.org/10.1093/petrology/egi029.

15. Harris N., Hunt A., Parkinson I., Tindle A., Yondon M., Hammond S., 2010. Tectonic Implications of Garnet-Bearing Mantle Xenoliths Exhumed by Quaternary Magmatism in the Hangay Dome, Central Mongolia. Contributions to Mineralogy and Petrology 160, 67–81. https://doi.org/10.1007/s00410-009-0466-6.

16. He D., Liu Y., Tong X., Zong K., Hu Zh., Gao Sh., 2013. Multiple Exsolutions in a Rare Clinopyroxene Megacryst from the Hannuoba Basalt, North China: Implications for Subducted Slab-Related Crustal Thickening and Recycling. Lithos 177, 136–147. https://doi.org/10.1016/j.lithos.2013.06.018.

17. Herzberg C.T., Asimow P.D., 2015. PRIMELT3 MEGA. XLSM Software for Primary Magma Calculation: Peridotite Primary Magma MgO Contents from the Liquidus to the Solidus. Geochemistry, Geophysics, Geosystems 16 (2), 563–578. https://doi.org/10.1002/2014GC005631.

18. Hu L., Pan S., Lu R., Zheng J., Dai H., Guo A., Yu L., Sun H., 2022. Origin of Gem-Quality Megacrysts in the Cenozoic Alkali Basalts from the Muling Area, Northeastern China. Lithos 422–423, 106720. https://doi.org/10.1016/j.lithos.2022.106720.

19. Jankovics M.É., Taracsák Z., Dobosi G., Embey-Isztin A., Batki A., Harangi S., Hauzenberger C.A., 2016. Clinopyroxene with Diverse Origins in Alkaline Basalts from the Western Pannonian Basin: Implications from Trace Element Characteristics. Lithos 262, 120–134. https://doi.org/10.1016/j.lithos.2016.06.030.

20. Kepezhinskas V.L., 1979. Cenozoic Alkaline Basaltoids of Mongolia and Their Deep-Seated Inclusions. Nauka, Moscow, 312 p. (in Russian)

21. Kuzmichev A.B., 2004. Tectonic History of the Tuva-Mongolian Massif: Early Baikalian, Late Baikalian and Early Caledonian Stages. Probel, Moscow, 192 p. (in Russian)

22. Lambart S., Baker M.B., Stolper E.M., 2016. The Role of Pyroxenite in Basalt Genesis: Melt-PX, a Melting Parameterization for Mantle Pyroxenites Between 0.9 and 5 GPa. Journal of Geophysical Research: Solid Earth 121 (8), 5708–5735. https://doi.org/10.1002/2015JB012762.

23. Li Y.-Q., Ma Ch.-Q., Robinson P.T., 2016. Petrology and Geochemistry of Cenozoic Intra-Plate Basalts in East-Central China: Constraints on Recycling of an Oceanic Slab in the Source Region. Lithos 262, 27–43. https://doi.org/10.1016/j.lithos.2016.06.012.

24. Liu Y.-D., Ying J.-F., 2019. Origin of Clinopyroxene Megacrysts in Volcanic Rocks from the North China Craton: A Comparison Study with Megacrysts Worldwide. International Geology Review 62 (15), 1845–1861. https://doi.org/10.1080/00206814.2019.1663766.

25. Lu N., Wang G., Fu Y., Peng Z., 2022. Implication of Garnet Zoning in High Pressure- Ultrahighpressure Eclogite from Changning-Menglian Suture Zone, Bangbing Area, Southeast Tibetan Plateau. Frontiers in Earth Science 10, 930880. https://doi.org/10.3389/feart.2022.930880.

26. Matusiak-Małek M., Puziewicz J., Ntaflos T., Woodland A., Uenver-Thiele L., Büchner J., Grégoire M., Aulbach S., 2020. Variable Origin of Clinopyroxene Megacrysts Carried by Cenozoic Volcanic Rocks from the Eastern Limb of Central European Volcanic Province (SE Germany and SW Poland). Lithos 382–383, 105936. https://doi.org/10.1016/j.lithos.2020.105936.

27. Morimoto N., Fabries J., Ferguson A.K., Ginzburg I.V., Ross M., Seifert F.A., Zussman J., Aoki K., Gottardi G., 1988. Nomenclature of Pyroxenes. American Mineralogist 73 (9–10), 1123–1133.

28. Neave D.A., Putirka K.D., 2017. A New Clinopyroxene-Liquid Barometer, and Implications for Magma Storage Pressures Under Icelandic Rift Zones. American Mineralogist 102 (4), 777–794. https://doi.org/10.2138/am-2017-5968.

29. Perepelov A., Kuzmin M., Tsypukova S., Shcherbakov Yu., Dril S., Didenko A., Dalai-Erdene E., Puzankov M., Zhgilev A., 2020. Late Cenozoic Uguumur and Bod-Uul Volcanic Centers in Northern Mongolia: Mineralogy, Geochemistry, and Magma Sources. Minerals 10 (7), 612. https://doi.org/10.3390/min10070612.

30. Putirka K.D., 2008. Thermometers and Barometers for Volcanic Systems. Reviews in Mineralogy and Geochemistry 69 (1), 61–120. https://doi.org/10.2138/rmg.2008.69.3.

31. Rasskazov S.V., Bogdanov G.V., Medvedeva T.I., Elizaryeva T.I., Tatarinov A.V., 1989. Deep-Seated Xenoliths from the Bartoy Volcanites (Western Transbaikalia). Journal of Volcanology and Seismology 3, 38–48 (in Russian)

32. Sajeev K., Windley B.F., Connolly J.A.D., Kon Y., 2009. Retrogressed Eclogite (20 kbar, 1020 °C) from the Neoproterozoic Palghat-Cauvery Suture Zone, Southern India. Precambrian Research 171 (1–4), 23–36. https://doi.org/10.1016/j.precamres.2009.03.001.

33. Savatenkov V.M., Yarmolyuk V.V., Kudryashova E.A., Kozlovskii A.M., 2010. Sources and Geodynamics of the Late Cenozoic Volcanism of Central Mongolia: Evidence from Isotope-Geochemical Studies. Petrology 18, 278–307. https://doi.org/10.1134/S0869591110030057.

34. Seredkina A.I., 2021. The State of the Art in Studying the Deep Structure of the Earth’s Crust and Upper Mantle Beneath the Baikal Rift from Seismological Data. Izvestiya, Physics of the Solid Earth 57, 180–202. https://doi.org/10.1134/S1069351321020117.

35. Sun Ch., Liang Y., 2015. A REE-in-Garnet-Clinopyroxene Thermobarometer for Eclogites, Granulites and Garnet Peridotites. Chemical Geology 393–394, 79–92. https://doi.org/10.1016/j.chemgeo.2014.11.014.

36. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

37. Travin A.V., Yudin D.S., Vladimirov A.G., Khromykh S.V., Volkova N.I., Mekhonoshin A.S., Kolotilina T.B., 2009. Thermochronology of the Chernorud Granulite Zone, Ol’khon Region, Western Baikal Area. Geochemistry International 47, 1107–1124. https://doi.org/10.1134/S0016702909110068.

38. Tsypukova S.S., Perepelov A.B., Enhbat D., Scherbakov Yu.D., 2019. Volcanic Center Uguumur – Origin and Links of Alkaline Basalts Magmas, Megacrysts and Carbonate Phases Above the Mantle Plume (Northern Mongolia). In: Proceedings of the 21st Kerulien International Conference on Geology and High-Level Forum on Synergic Development of Beijing-Tianjin-Hebei in Ecological and Geological Environment. Shijiazhuang, p. 32.

39. Tsypukova S.S., Perepelov A.B., Shcherbakov Yu.D., Odgerel D., Enkhbat D.-E., Zhgilev A.P., Puzankov M.Yu., 2021. New Data on the Rock Composition and Age for the Tesiingol Volcanic Field in Northern Mongolia. In: Petrology and Geodynamics of Geological Processes. Proceedings of the XIII All-Russian Petrography Meeting (with Participation of Foreign Scientists) (September 6‒13, 2021). Vol. 3. Sochava Institute of Geography SB RAS, Irkutsk, p. 201–203 (in Russian)

40. Van der Voo R., Van Hinsbergen D.J.J., Domeier M., Spakman W., Torsvik T.H., 2015. Latest Jurassic-Earliest Cretaceous Closure of the Mongol-Okhotsk Ocean: A Paleomagnetic and Seismological-Tomographic Analysis. In: T.H. Anderson, A.N. Didenko, C.L. Johnson, A.I. Khanchuk, J.H. MacDonald (Eds), Late Jurassic Margin of Laurasia: A Record of Faulting Accommodating Plate Rotation. Geological Society of America 513, 589–606. https://doi.org/10.1130/2015.2513(19).

41. Xu Z., Zhao Z.F., Zheng Y.-F., 2012. Slab-Mantle Interaction for Thinning of Cratonic Lithospheric Mantle in North China: Geochemical Evidence from Cenozoic Continental Basalts in Central Shandong. Lithos 146–147, 202–217. https://doi.org/10.1016/j.lithos.2012.05.019.

42. Yarmolyuk V.V., Kuzmin M.I., Ernst R.E., 2014. Intraplate Geodynamics and Magmatism in the Evolution of the Central Asian Orogenic Belt. Journal of Asian Earth Sciences 93, 158–179. https://doi.org/10.1016/j.jseaes.2014.07.004.

43. Yu X., Zeng G., Chen L.-H., Hu S.-L., Yu Z.-Q., 2018. Magma-Magma Interaction in the Mantle Recorded by Megacrysts from Cenozoic Basalts in Eastern China. International Geology Review 61 (6), 675–691. https://doi.org/10.1080/00206814.2018.1446190.

44. Zeng G., Chen L.-Н., Yu X., Liu J.-Q., Xu X.-Sh., Erdmann S., 2017. Magma-Magma Interaction in the Mantle Beneath Eastern China. Journal of Geophysical Research: Solid Earth 122 (4), 2763–2779. https://doi.org/10.1002/2017JB014023.

45. Zong K., Liu Y., Liu X., Liu X., Zhang B.-Н., 2007. Trace Elemental Records of Short-Lived Heating During Exhumation of the CCSD Eclogites. Chinese Science Bulletin 52, 813–824. https://doi.org/10.1007/s11434-007-0113-4


Supplementary files

1. Zhgilev_et_al_2025_Suppl-1.xlsx
Subject
Type Исследовательские инструменты
Download (174KB)    
Indexing metadata ▾

Review

For citations:


Zhgilev A.P., Perepelov A.B., Tsypukova S.S., Shcherbakov Yu.D., Karimov A.A. PYROXENE AND GARNET MEGACRYSTS IN THE MAGMATIC SYSTEM AND MANTLE OF THE TESIINGOL VOLCANIC FIELD IN NORTHERN MONGOLIA. Geodynamics & Tectonophysics. 2025;16(3):0828. (In Russ.) https://doi.org/10.5800/GT-2025-16-3-0828. EDN: wkhsnk

Views: 109


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)