Preview

Geodynamics & Tectonophysics

Advanced search

ZONES OF SEISMOGENIC RUPTURES IN THE BAIKAL RIFT: SPATIAL LOCATION AND SEISMIC POTENTIAL

https://doi.org/10.5800/GT-2025-16-2-0823

EDN: GZQJKH

Abstract

Seismic hazard assessment remains one of the priorities of tectonically active regions. It is based on the data for sesimogenic ruptures indicating the segments of active surface faults. Based on the predecessor data, continuous satellite imagery interpretation, drone aerial photography, GPR profiling and morphostructural analysis, the authors of this paper have obtained new data concerning the location and main parameters of seismogenic ruptures in the Baikal rift. GIS format has been used to map surface ruptures along the Baikal coast with compiling the relevant digital database available on the http://activetectonics.ru website. By a number of features the ruptures are grouped into 20 zones, 6 of which consist of the secondary ruptures in the Khamar-Daban Range. The latter could result from a simultaneous impact of structural (tectonic structure), seismic and climatic factors (glacial retreat and load relief) which presently allows them to be classified as seismogravitational structures. Length-based and maximum single acting displacement-based calculations were made of the maximum possible magnitudes for the primary rupture zones. Seismic potential of the best-studied seismogenic zones of the Baikal rift is МW=7.2–7.3 and MS=7.3–7.5. On one hand, the present paper summarizes once again the results of the studies of seismogenic ruptures in the Baikal rift and on the other takes this issue to the next level. The obtained results have important implications for refinement of seismic hazard assessment and development of educational tourism in the region.

About the Authors

O. V. Lunina
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



I. A. Denisenko
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



A. A. Gladkov
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



References

1. Arzhannikova A., Arzhannikov S., 2019. Morphotectonic and Paleoseismological Studies of Late Holocene Deformation Along the Primorsky Fault, Baikal Rift. Geomorphology 342, 140–149. https://doi.org/10.1016/j.geomorph.2019.06.016.

2. Bucknam R.C., Anderson R.E., 1979. Estimation of Fault Scarp Ages from a Scarp-Height-Slope-Angle Relationship. Geology 7 (1), 11–14.

3. Caputo R., 2005. Ground Effects of Large Morphogenic Earthquakes. Journal of Geodynamics 40 (2–3), 113–118. https://doi.org/10.1016/j.jog.2005.07.001.

4. Chipizubov A.V., 2007. Optimal Assessment of Seismic Hazard in Pribaikalye. PhD Thesis (Doctor of Geology and Mineralogy). Irkutsk, 417 p. (in Russian)

5. Chipizubov A.V., Melnikov A.I., Imaev V.S., Baskakov V.S., 2006. Fragments of Paleoseismic Dislocations in the North Baikal (Southern Flank) and Primorsky Fault Zones. In: Transactions of the Baikal-Lena Nature Reserve. Iss. 4. Irkutsk, p. 7–13 (in Russian)

6. Chipizubov A.V., Melnikov A.I., Stolpovsky A.V., Baskakov V.S., 2003. Paleoseismic Dislocations and Paleoearthquakes Within the Baikal-Lena Reserve (North Baikal Fault Zone). Transactions of the State Baikal-Lena Nature Reserve. Iss. 3. Irkutsk, p. 6–18 (in Russian)

7. Chipizubov A.V., Smekalin O.P., Imaev V.S., 2015. Paleoseismic Dislocations and Paleo-Earthquakes of the Primorsky Fault Zone (Lake Baikal). Problems of Engineering Seismology 42 (3), 5–19 (in Russian)

8. Denisenko I.A., Lunina O.V., 2020. Late Quarternary Displacements Along the Sarma Segment of the Primorsky Fault Based on GPR Survey Data (Baikal Rift). Geodynamics & Tectonophysics 11 (3), 548–565 (in Russian) https://doi.org/10.5800/GT-2020-11-3-0490.

9. Denisenko I.A., Lunina O.V., 2021. Late Quaternary Displacements Along the Zunduk Fault According to Ground-Penetrating Radar and Morphostructural Analysis (Northwestern Coast of Lake Baikal). Vestnik of SPU. Earth Sciences 66 (2), 374–395 (in Russian) https://doi.org/10.21638/spbu07.2021.210.

10. Denisenko I.A., Lunina O.V., 2023. Seismogenic Deformations Confined to the Cheremshano-Bolsodeysky Segment of the North Baikal Fault. Problems of Engineering Seismology 50 (3), 30–43 (in Russian) https://doi.org/10.21455/VIS2023.3-3.

11. Enikeev F.I., 2020. Paleogeography of the Sartan Glaciation of the Hamar-Daban Ridge (Southern Baikal Region). Transbaikal State University Journal 26 (7), 17–32 (in Russian) https://doi.org/10.21209/2227-9245-2020-26-7-17-32.

12. Gori S., Falcucci E., Dramis F., Galadini F., Galli P., Giaccio B., Messina P., Pizzi A., Sposato A., Cosentino D., 2014. Deep-Seated Gravitational Slope Deformation, Large-Scale Rock Failure, and Active Normal Faulting Along Mt. Morrone (Sulmona Basin, Central Italy): Geomorphological and Paleoseismological Analyses. Geomorphology 208, 88–101. https://doi.org/10.1016/j.geomorph.2013.11.017.

13. Khromovskikh V.S., 1965. Seismogeology of South Pribaikalye. Nauka, Moscow, 122 p. (in Russian)

14. Khromovskikh V.S., Chipizubov A.V., Kurushin R.A., Smekalin O.P., Delyansky E.A., 1993. New Data on Paleoseismodislocations in the Baikal Rift Zone. In: Seismicity and Seismic Zoning of the East Eurasia. Iss. 1. Moscow, p. 256–265 (in Russian)

15. Kondorskaya N.V., Shebalin N.V. (Eds), 1982. New Catalog of Strong Earthquakes in the USSR from Ancient Times Through 1977. World Data Center A for Solid Earth Geophysics Report SE-31. NOAA, Boulder, USA, 608 p.

16. Lunina O.V., 2002. Influence of the Stressed State of the Lithosphere on the Ratio of Parameters and Inner Structure of Seismoactive Faults. PhD Thesis (Candidate of Geology and Mineralogy). Irkutsk, 223 p. (in Russian)

17. Lunina O.V., Denisenko I.A., 2020. Single-Event Throws Along the Delta Fault (Baikal Rift) Reconstructed from Ground Penetrating Radar, Geological and Geomorphological Data. Journal of Structural Geology 141, 104209. https://doi.org/10.1016/j.jsg.2020.104209.

18. Lunina O.V., Denisenko I.A., Gladkov A.A., Braga C., 2023. Enigmatic Surface Ruptures at Cape Rytyi and Surroundings, Baikal Rift, Siberia: Seismic Hazard Implication. Quaternary 6 (1), 22. https://doi.org/10.3390/quat6010022.

19. Lunina O.V., Denisenko I.A., Ignatenko E.B., Gladkov А.А., 2024. Seismogenic Zone of Cape Shartlay (Lake Baikal): Specific Features of Structure, Displacements and Rupture Growth. Geodynamics & Tectonophysics 15 (4), 0776 (in Russian) https://doi.org/10.5800/GT-2024-15-4-0776.

20. Lunina O.V., Gladkov A.S., Gladkov A.A., 2019. Surface and Shallow Subsurface Structure of the Middle Kedrovaya Paleoseismic Rupture Zone in the Baikal Mountains from Geomorphological and Ground-Penetrating Radar Investigations. Geomorphology 326, 54–67. https://doi.org/10.1016/j.geomorph.2018.03.009.

21. Lunina O.V., Li D., Lyu Y., Wang Y., Li M., Gao Yu., Gladkov A.S., Denisenko I.A. et al., 2020. Using in Situ-Produced 10Be to Constrain the Age of the Latest Surface-Rupturing Earthquake Along the Middle Kedrovaya Fault (Baikal Rift). Quaternary Geochronology 55, 101036. https://doi.org/10.1016/j.quageo.2019.101036.

22. McCalpin J.P. (Ed.), 2009. Paleoseismology. 2nd Edition. Academic Press, USA, 647 p.

23. McCalpin J.P., 1999. Criteria for Determining the Seismic Significance of Sackungen and Other Scarplike Landforms in Mountainous Regions. In: Techniques for Identifying Faults and Determining Their Origins. NUREG/CR-5503. P. A-122–A-142.

24. Nurminen F., Baize S., Boncio P., Blumetti A.M., Cinti F.R., Civico R., Guerrieri L., 2022 SURE 2.0 – New Release of the Worldwide Database of Surface Ruptures for Fault Displacement Hazard Analyses. Scientific Data 9, 729. https://doi.org/10.1038/s41597-022-01835-z.

25. Radulov A., Dilov T., Rockwell T., Štěpančíková P., Yaneva M., Donkova Y., Stemberk J., Sana H., Nikolov N., 2023. First Paleoseismic Data from the Balkan Range. Tectonophysics 863, 230009. https://doi.org/10.1016/j.tecto.2023.230009.

26. Rogozhin E.A., 2012. An Outline of the Regional Seismotectonics. IPE RAS Publishing House, Moscow, 340 p. (in Russian) [Рогожин Е.А. Очерки региональной сейсмотектоники. М.: Изд-во ИФЗ РАН, 2012. 340 с.].

27. Shchetnikov A.A., Radziminovich Y.B., Vologina E.G., Ufimtsev G.F., 2012. The Formation of Proval Bay as an Episode in the Development of the Baikal Rift Basin: A Case Study. Geomorphology 177–178, 1–16. https://doi.org/10.1016/j.geomorph.2012.07.023.

28. Smekalin O.P., Chipizubov A.V., Imayev V.S., 2010. Paleoearthquakes in the Pribaikalie: Methods and Results of Dating. Geodynamics & Tectonophysics 1 (1), 55–74 (in Russian) https://doi.org/10.5800/GT-2010-1-1-0006.

29. Smekalin O.P., Imaev V.S., Chipizubov A.V., 2007. The Studying of Seismogenic Normal Faults of Kichera Structure (Northern Baykal Region) in the Trench Profiles. Lithosphere 6, 111–124 (in Russian)

30. Solonenko V.P. (Ed.), 1968. Seismotectonics and Seismicity of the Rift System of Pribaikalie. Nauka, Moscow, 220 p. (in Russian)

31. Solonenko V.P. (Ed.), 1977. Seismic Zoning of East Siberia and Its Geological and Geophysical Bases. Nauka, Novosibirsk, 301 p. (in Russian)

32. Solonenko V.P. (Ed.), 1981. Seismogeology and Detailed Seismic Zoning of Pribaikalye. Nauka, Novosibirsk, 168 p. (in Russian)

33. Solonenko V.P. (Ed.), 1985. Geology and Seismicity of the Baikal-Amur Mainline Zone. Seismogeology and Seismic Zoning. Nauka, Novosibirsk, 192 p. (in Russian)

34. Strom A.L., Nikonov A.A., 1997. Relations Between the Seismogenic Fault Parameters and Earthquake Magnitude. Izvestiya, Physics of the Solid Earth 33 (12), 1011–1022.

35. Tomáš P., Mentlík P., Zondervan A., Norton K., Hradecký J., 2015. Are Sackungen Diagnostic Features of (De)Glaciated Mountains? Geomorphology 248, 396–410. https://doi.org/10.1016/j.geomorph.2015.07.022.

36. Vietinghoff A.Kh., 1865. Description of the Land near the Selenga River Mouth, Subsided After the Earthquakes of December 30 and 31, 1861. Mining Journal 3(7), 95–101 (in Russian)

37. Wells D.L., Coppersmith K.J., 1994. New Empirical Relationship Among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002. https://doi.org/10.1785/BSSA0840040974.


Supplementary files

1. Lunina_et_al_2025_Suppl-1.rar
Subject
Type Исследовательские инструменты
Download (162KB)    
Indexing metadata ▾
2. Lunina_et_al_2025_Suppl-2.pdf
Subject
Type Исследовательские инструменты
Download (594KB)    
Indexing metadata ▾

Review

For citations:


Lunina O.V., Denisenko I.A., Gladkov A.A. ZONES OF SEISMOGENIC RUPTURES IN THE BAIKAL RIFT: SPATIAL LOCATION AND SEISMIC POTENTIAL. Geodynamics & Tectonophysics. 2025;16(2):0823. (In Russ.) https://doi.org/10.5800/GT-2025-16-2-0823. EDN: GZQJKH

Views: 273


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)