MATERIAL COMPOSITION, ISOTOPIC-GEOCHRONOLOGICAL STUDIES AND METALLOGENIC POTENTIAL OF GRANITES OF THE KHOTUGU-EYEKIT MASSIF AND RHYOLITE DIKE OF THE SOLOLI UPLIFT
https://doi.org/10.5800/GT-2024-15-6-0796
EDN: BGGUPK
Abstract
The paper describes the petrographic and petro-geochemical composition of granitoids of the Khotugu-Eyekit massif and the rhyolite dike of the Sololi uplift. It was revealed that the rocks of the massif are represented by microcline granites. The massif is monotonous in composition, i.e. it does not exhibit any facies transitions or differences in intrusion phases. In addition to the massif rocks, the study area is characterized by a widespread occurrence of small bodies of rhyolite dike rocks that have been strongly altered by secondary processes. An assumption was made about the pre-granitoid origin of these dikes and their intensive post-magmatic alteration. Based on the content of basic petrooxides, its ratios and relationships, as well as indicator petrochemical coefficients, it was concluded that the rocks of the Khotugu-Eyekit massif are most similar to the A2-type plumasite granites of the high-potassium calc-alkaline petrochemical series. The main geochemical criteria indicate the dual nature of the granites of the Khotugu-Eyekit massif, which are similar to the granitoids of the collisional formation setting of the area, and their petrogenesis is apparently associated with both mixed crust-mantle and purely crustal source. The same compositional parameters suggest that the rhyolite dike belongs to low-alkaline formations of the tholeiitic series, corresponding to those of the plumasite rare metal series of the crustal nature. The U-Pb dating yielded an absolute age of 2146±13 Ma for the rhyolite dikes; the same method and the geological data imply that the Khotugu-Eyekit massif is Mesozoic in age, dating back to 186.7–157.2 Ma. Mineragenic specialization analysis of the Khotugu-Eyekit massif and the rhyolite dike, performed on the basis of the geochemical data, allows classifying the studied formations as productive in terms of gold-bearing ore formations.
About the Authors
A. I. IvanovRussian Federation
39 Lenin Ave, Yakutsk 677007, Republic of Sakha (Yakutia)
B. B. Gerasimov
Russian Federation
39 Lenin Ave, Yakutsk 677007, Republic of Sakha (Yakutia)
M. S. Ivanov
Russian Federation
39 Lenin Ave, Yakutsk 677007, Republic of Sakha (Yakutia)
A. I. Zhuravlev
Russian Federation
39 Lenin Ave, Yakutsk 677007, Republic of Sakha (Yakutia)
D. A. Vasiliev
Russian Federation
39 Lenin Ave, Yakutsk 677007, Republic of Sakha (Yakutia)
A. I. Kondratiev
Russian Federation
18B, Kirov St, Yakutsk, 677000, Republic of Sakha (Yakutia)
References
1. Balashov Yu.A., 1976. Geochemistry of Rare-Earth Elements. Nauka, Moscow, 267 p. (in Russian)
2. Baldwin J.A., Pearce J.A., 1982. Discrimination of Productive and Nonproductive Porphyritic Intrusions in the Chilean Andes. Economic Geology 77 (3), 665–674. https://doi.org/10.2113/gsecongeo.77.3.664.
3. Blevin P.L., Chappell B.W., 1992. The Role of Magma Sources, Oxidation States and Fractionation in Determining the Granite Metallogeny of Eastern Australia. Earth and Environmental Science Transactions of the Royal Society of Edinburgh 83 (1–2), 305–316. https://doi.org/10.1017/S0263593300007987.
4. Brakhfogel F.F., 1984. Geological Aspects of Kimberlite Magmatism of North-East of Siberian Platform. Yakutsk Branch of the USSR Academy of Sciences, 128 p. (in Russian)
5. Chappell B.W., White A.I.R., 1974. Two Contrasting Granite Types. Pacific Geology 8, 173–174.
6. Chappell B.W., White A.J.R., 2001. Two Contrasting Granite Types: 25 Years Later. Australian Journal of Earth Sciences 48 (4), 489–499. https://doi.org/10.1046/j.1440-0952.2001.00882.x.
7. Collins W.J., Beams S.D., White A.J.R., Chappel B.W., 1982. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia. Contributions to Mineralogy and Petrology 80, 189–200. https://doi.org/10.1007/BF00374895.
8. Degtyarev K.E., Shatagin K.N., Luchitskaya M.V., 2005. Paleozoic Granitoids of the Chingiz Range, Eastern Kazakhstan: Main Stages of Emplacement, Compositional Features, and Source Nature. Geochemistry International 43 (9), 904–919.
9. Donskaya T.V., Gladkochub D.P., Kovach V.P., Mazukabzov A.M., 2005. Petrogenesis of the Early Proterozoic Postcollisional Granitoids of the Southern Siberian Craton. Petrology 13 (3), 229–252.
10. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., 2008. Crust-Mantle Interaction in Petrogenesis of Paleoproterozoic Postcollisional Acid Granitoids and Volcanites of Western Pribaikalie. In: Granites and Evolution of Earth: Geodynamic Position, Petrogenesis and Ore Potential of Granitoid Batholiths. Proceedings of I International Geological Conference (August 26–29, 2008). GIN SB RAS, Ulan-Ude, p. 129–131 (in Russian)
11. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., 2018. Early Proterozoic Granitoids of the Olenek Complex (Northern Siberian Craton): Petrogenesis and Geodynamic Setting. Russian Geology and Geophysics 59 (3), 226–237. https://doi.org/10.1016/j.rgg.2018.03.002.
12. Eby G.N., 1990. The A-Type Granitoids: A Review of Their Occurrence and Chemical Characteristics and Speculations on Their Petrogenesis. Lithos 26 (1–2), 115–134. https://doi.org/10.1016/0024-4937(90)90043-Z.
13. Eby G.N., 1992. Chemical Subdivision of the A-Type Granitoids: Petrogenetic and Tectonic Implications. Geology 20 (7), 641–644. https://doi.org/10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2.
14. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.
15. Gerasimov B.B., Zhelonkin R.Yu., Mukhamediarov M.G., 2021. Mineralogical Features of Gold of Conglomerates of Permian Age of Sololi Uplift. Vestnik of Saint Petersburg University. Earth Sciences 66 (3), 578–594 (in Russian) https://doi.org/10.21638/spbu07.2021.308.
16. Gerasimov B.B., Zhuravlev A.I., Ivanov A.I., Ivanov M.S., 2023. Mineralogical Features of Gold Ore Occurrences of Sololi Uplift of Olenek Arch. Geology and Mineral Resources of Siberia 56 (4), 166–178 (in Russian) https://doi.org/10.20403/2078-0575-2023-4б-166-178.
17. Gladkochub D.P., Pisarevskii S.A., Donskaya T.V., Natapov L.M., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., 2006. The Siberian Craton and Its Evolution in Terms of the Rodinia Hypothesis. Episodes 29 (3), 169–174. https://doi.org/10.18814/epiiugs/2006/v29i3/002.
18. Goldschmidt V.M., 1954. Geochemistry. Oxford University Press, London, 730 p.
19. Grebennikov A.V., 2014. A-Type Granites and Related Rocks: Petrogenesis and Classification. Russian Geology and Geophysics 55 (9), 1074–1086. https://doi.org/10.1016/j.rgg.2014.08.003.
20. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICPMS. In: P.J. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, Canada, p. 308–311.
21. Irvine T.N., Baragar W.R.A., 1971. A Guide to the Chemical Classification of the Common Volcanic Rocks. Canadian Journal of Earth Sciences 8 (5), 523–548. https://doi.org/10.1139/e71-055.
22. Khudoley A.K., Verzhbitsky V.E., Zastrozhnov D.A., O’Sullivan P., Ershova V.B., Proskurnin V.F., Tuchkova M.I., Rogov M.A., Kyser T.K., Malyshev S.V., Schneider G.V., 2018. Late Paleozoic – Mesozoic Tectonic Evolution of the Eastern Taimyr – Severnaya Zemlya Fold and Thrust Belt and Adjoining Yenisey-Khatanga Depression. Journal of Geodynamics 119, 221–241. https://doi.org/10.1016/j.jog.2018.02.002.
23. Konstantinovskii A.A., 2000. Paleoplacers in Evolution of Sedimentary Shell of Continents. Nauchnii Mir, Moscow, 228 p. (in Russian)
24. Krasnobaev A.A., 1986. Zircon as an Indicator of Geological Processes. Nauka, Moscow, 152 p. (in Russian)
25. Le Bas M.J., Le Maitre R.W., Streckeisen A., Zanettin B., 1986. A Chemical Classification of Volcanic Rocks Based on the Total Alkali-Silica Diagram. Journal of Petrology 27 (3), 745–750. https://doi.org/10.1093/petrology/27.3.745.
26. Luchitskaya M.V., 2012. Granitoid Magmatism and Formation of the Continental Crust of the Northern Frame of the Pacific Ocean in Mesozoic-Cenozoic. PhD Thesis (Doctor of Geology and Mineralogy). Moscow, 360 p. (in Russian)
27. Ludwig K.R., 2008. ISOPLOT 3.70. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 4, 76 p.
28. Maeda J., 1990. Opening of the Kuril Basin Deduced from the Magmatic History of Central Hokkaido, North Japan. Tectonophysics 174 (3–4), 235–255. https://doi.org/10.1016/0040-1951(90)90324-2.
29. McDonough W.F., Sun S.-S., Ringwood A.E., Jagoutz E., Hofmann A.W., 1992. Potassium, Rubidium, and Cesium in the Earth and Moon and the Evolution of the Mantle of the Earth. Geochimica et Cosmochimica Acta 56 (3), 1001–1012. https://doi.org/10.1016/0016-7037(92)90043-I.
30. Middlemost E.A., 1985. Magmas and Magmatic Rocks: An Introduction to Igneous Petrology. Longman, Scientific & Technical, London, 266 p.
31. Nenakhov V.M., Ivannikov V.V., Kuznetsov L.V., Strick Yu.N., 1992. Features of the Study and Geological Mapping of Collisional Granitoids. Roscomnedra, Moscow, 100 p. (in Russian)
32. O’Connor J.T., 1965. A Classification of Quartz-Rich Igneous Rock Based on Feldspar Rations. U.S. Geological Survey Professional Paper 525-B, 79–84.
33. Patiño Douce A.E., 1999. What Do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society of London Special Publications 168 (1), 55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05.
34. Pearce J.A., 1983. Role of Sub-Continental Lithosphere in Magma Genesis at Active Continental Margins. In: C.J. Hawkesworth, M.J. Norry (Eds), Continental Basalts and Mantle Xenoliths. Shiva, Nantwich, p. 230–249.
35. Pearce J.A., Harris N.B.W., Tindle A.G., 1984. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks. Journal of Petrology 25 (4), 956–983. https://doi.org/10.1093/petrology/25.4.956.
36. Peccerillo A., Taylor S.R., 1976. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area, Northern Turkey. Contributions to Mineralogy and Petrology 58, 63–81. https://doi.org/10.1007/BF00384745.
37. Petrographic Code of Russia, 2009. Magmatic, Metamorphic, Metasomatic and Impact Formations. VSEGEI Publishing House, Saint Petersburg, 200 p. (in Russian)
38. Polyansky O.P., Prokopiev A.V., Koroleva O.V., Tomshin M.D., Reverdatto V.V., Selyatitsky A.Yu., Travin A.V., Vasiliev D.A., 2017. Temporal Correlation Between Dyke Swarms and Crustal Extension in the Middle Palaeozoic Vilyui Rift Basin, Siberian Platform. Lithos 282–283, 45–64. https://doi.org/10.1016/j.lithos.2017.02.020.
39. Prokopiev A.V., Daykunenko A.V., 2001. Deformation Structures of Fold-Thrusts Belts. In: L.M. Parfenov, M.I. Kuzmin (Eds), Tectonics, Geodynamics and Metallogeny of the Sakha Republic (Yakutia). MAIK Nauka/Interperiodika, Moscow, p. 156–198 (in Russian)
40. Prokopiev A.V., Khudoley A.K., Koroleva O.V., Kazakova G.G., Lokhov D.K., Malyshev S.V., Zaitsev A.I., Roev S.P., Sergeev S.A., Berezhnaya N.G., Vasiliev D.A., 2016. The Early Cambrian Bimodal Magmatism in the Northeastern Siberian Craton. Geology and Geophysics 57 (1), 199–224. https://doi.org/10.1016/j.rgg.2016.01.011.
41. Pupin J.P., 1980. Zircon and Granite Petrology. Contributions to Mineralogy and Petrology 73, 207–220. https://doi.org/10.1007/BF00381441.
42. Roberts M.P., Clemens J.D., 1993. Origin of High-Potassium, Calc-Alkaline, I-Type Granitoids. Geology 21 (9), 825–828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2.
43. Rosen O.M., 2003. Siberian Craton: Tectonic Zoning, Stages of Evolution. Geotectonics 3, 3–21 (in Russian)
44. Rudnick R.L., Gao S., 2003. Composition of the Continental Crust. Treatise on Geochemistry 3, 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.
45. Sergeev S.A., Pushkarev Yu.D., Lokhov K.I., Sergeev D.S., 2015. Review of Modern Methods of Isotope Geochronology (Component of the Geochronological Atlas). VSEGEI, Saint-Petersburg, 31 p. (in Russian)
46. Shpunt B.R., 1974. Typomorphic Features and Genesis of Placer Gold in the North of Siberian Platform. Russian Geology and Geophysics 9, 77–88 (in Russian)
47. State Geological Map of the Russian Federation, 2013. Anabar-Viluy Series. Scale of 1:1000000. Sheet R-51 (Dzhardzhan). Explanatory Note. VSEGEI, Saint-Petersburg, 397 p. (in Russian)
48. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.
49. Tauson L.V., Gundobin G.M., Zorina L.D., 1987. Geochemical Fields of Ore-Magmatic Systems. Nauka, Novosibirsk, 202 p. (in Russian)
50. Taylor S.R., McLennan S.M., 1988. Continental Crust: Its Composition and Evolution. Mir, Moscow, 384 p. (in Russian)
51. Vasiliev D.A., Prokopiev A.V., Khudoley A.K., Ershova V.B., Kazakova G.G., Vetrov E.V., 2019. Thermochronology of the Northern Part of the Verkhoyansk Fold-and-Thrust Belt According to Apatite Fission-Track Age. Arctic and Subarctic Natural Resources 24 (4), 49–66 (in Russian) DOI:10.31242/2618-9712-2019-24-4-4.
52. Vasiliev D.A., Prokopiev A.V., Khudoley A.K., Kazakova G.G., Vetrov E.V., 2018. Thermochronology of Ust’-Olenek Fold System and North of Olenek Uplift According Track Dating of Apatite. In: Geology and Mineral Resources of the North-East of Russia: Proceedings of the VIII All-Russian Scientific and Practical Conference (April 18–20, 2018). Vol. 2. Publishing House of the North-Eastern Federal University, Yakutsk, p. 32–36 (in Russian)
53. Velikoslavinskii S.D., 2003. Geochemical Classification of Silicic Igneous Rocks of Major Geodynamic Environments. Petrology 11 (4), 327–342.
54. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-Type Granites: Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology 95, 407–419. https://doi.org/10.1007/BF00402202.
55. Wingate M.T.D., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Konstantinov K.M., Mazukabzov A.M., Stanevich A.M., 2009. Geochronology and Paleomagnetism of Mafic Igneous Rocks in the Olenek Uplift, Northern Siberia: Implications for Mesoproterozoic Supercontinents and Paleogeography. Precambrian Research 170 (3–4), 256–266. https://doi.org/10.1016/j.precamres.2009.01.004.
56. Yablokova S.V., Izrailev L.M., 1988. Mineralogy of Gold in Heterochronous Sedimentary Cover Units of the Olenek Uplift. In: S.S. Kalnichenko, E.Ya. Sinyugina (Eds), Geology of Precious Metal Placer Deposits and Their Forecast. Iss. 227. TsNIGRI, Moscow, p. 58–65 (in Russian)
Review
For citations:
Ivanov A.I., Gerasimov B.B., Ivanov M.S., Zhuravlev A.I., Vasiliev D.A., Kondratiev A.I. MATERIAL COMPOSITION, ISOTOPIC-GEOCHRONOLOGICAL STUDIES AND METALLOGENIC POTENTIAL OF GRANITES OF THE KHOTUGU-EYEKIT MASSIF AND RHYOLITE DIKE OF THE SOLOLI UPLIFT. Geodynamics & Tectonophysics. 2024;15(6):0796. (In Russ.) https://doi.org/10.5800/GT-2024-15-6-0796. EDN: BGGUPK