Preview

Geodynamics & Tectonophysics

Advanced search

MICA COMPOSITION REFLECTING CONDITIONS OF AILLIKITE FORMATION IN ZIMA COMPLEX OF EASTERN SIBERIA

https://doi.org/10.5800/GT-2024-15-5-0786

EDN: OAGAKW

Abstract

Four types of mica were identified in the macrocryst and fine porphyry aillikites from the Yarma zone of the Urik-Ija graben considering specific features of morphology, chemical composition, zonation and crystallization conditions. Mica of the first type was found in macrocryst aillikites. It is available as deformed phlogopite macrocrysts rich in TiO2 (2.5–5.7 wt. %) with varying content of Cr2O3 (from detection limit to 2.0 wt. %) and Mg# 0.87–0.89 and 0.79–0.81 in different dikes. In chemical composition this phlogopite corresponds to the secondary phlogopite from mantle xenoliths, and it was obviously captured by protoaillikite melt form the rocks of the lithosphere mantle. Mica of type 2 represents phlogopite from groundmass and infrequent phenocrysts in fine porphyry aillikites and groundmass of macrocryst aillikites. In this phlogopite, TiO2 content varies in different dikes from 0.7 to 6.0 wt. %, Mg# index varies from 0.70 to 0.90. Phlogopite crystallized within the upper crust at temperature ranging from 840 to 680 °С. Mica of type 3 represents biotite (Mg# 0.40–0.65), producing rims around phlogopite and independent grains in fine porphyry and in places in macrocryst aillikites. The rims crystallized from residual Fe-rich melt at moderately heightened fO2, the temperature of biotite formation reached 700‒760 °C. Mica of type 4 is available in macrocryst aillikites as biotite (Mg# 0.40‒0.67) with phlogopite rims. It was inferred, that this biotite crystallized in intermediate magmatic chambers in the upper crust from essentially carbonate melts, separated through crystallization differentiation from protoaillikite magmas and captured by new portions of less differentiated melts. Obtained data point to metasomatic transformation of the lithosphere mantle, preceding to protoaillikite melting, under the southern margin of the Siberian craton. Thus, we may assume existence in the upper crust of the sites composed of partially crystallized melt.

About the Authors

V. B. Savelyeva
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033 



Yu. V. Danilova
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033 



E. P. Bazarova
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033 



B. S. Danilov
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033 



E. A. Khromova
Dobretsov Geological Institute, Siberian Branch of the Russian Academy of Sciences
Russian Federation

6а Sakhyanova St, Ulan-Ude 670047, Republic of Buryatia 



References

1. Andreeva I.A., Kovalenko V.I., Nikiforov A.V., Kononkova N.N., 2007. Compositions of Magmas, Formation Conditions, and Genesis of Carbonate-Bearing Ijolites and Carbonatites of the Belaya Zima Alkaline Carbonatite Complex, Eastern Sayan. Petrology 15, 551–574. https://doi.org/10.1134/S0869591107060033.

2. Arima M., Edgar A.D., 1981. Substitution Mechanisms and Solibility of Titanium in Phlogopites from Rocks of Probable Mantle Origin. Contributions to Mineralogy and Petrology 77, 288–295. https://doi.org/10.1007/BF00373544.

3. Ashchepkov I., Zhmodik S., Belyanin D., Kiseleva O.N., Medvedev N., Travin A., Yudin D., Karmanov N.S., Downes H., 2020. Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits. Minerals 10 (5), 404. https://doi.org/10.3390/min10050404.

4. Babushkina S.A., 2019. New Data on the Composition of Phlogopite Macrocrystals from Yubileinaya Pipe. Vestnik of North-Eastern Federal University. Earth Sciences 4, 41–46 (in Russian) DOI:10.25587/SVFU.2020.16.49738.

5. Bachmann O., Bergantz G.W., 2008. Rhyolites and Their Source Mushes across Tectonic Setting. Journal of Petrology 49 (12), 2277–2285. https://doi.org/10.1093/petrology/egn068.

6. Birkett T.C., McCandless T.E., Hood C.T., 2004. Petrology of the Renard Igneous Bodies: Host Rocks for Diamond in the Northern Otish Mountains Region, Quebec. Lithos 76 (1–4), 475–490. https://doi.org/10.1016/j.lithos.2004.03.054.

7. Carswell D.A., 1973. Primary and Secondary Phlogopites and Clinopyroxenes in Garnet Lherzolite Xenoliths. In: L.N. Ahrens, A.R. Duncan, A.J. Erlank (Eds), Extended Abstracts of Papers of the International Conference on Kimberlite (September 16 – October 8, 1973, Rondebosch, South Africa), p. 59–62. https://doi.org/10.29173/ikc846.

8. Cashman K.V., Sparks R.S.J., Blundy J.D., 2017. Vertically Extensive and Unstable Magmatic Systems: A Unified View of Igneous Processes. Science 355 (6331), eaag3055. https://doi.org/10.1126/science.aag3055.

9. Chalapathi Rao N.V., Giri R.K., Sharma A., Pandey A., 2020. Lamprophyres from the Indian Shield: A Review of Their Occurrence, Petrology, Tectonomagmatic Significance and Relationship with the Kimberlites and Related Rocks. Episodes 43 (1), 231–248. https://doi.org/10.18814/epiiugs/2020/020014.

10. Danilova Yu.V., Savelyeva V.B., Bazarova E.P., Danilov B.S., Ponomarchuk V.A., 2022. Isotope Composition of Carbon and Oxygen in Calcites of Alkaline Ultramaphic Dykes within the Urik-Iya Graben. Geodynamics & Tectonophysics 13 (4), 0653 (in Russian) https://doi.org/10.5800/GT-2022-13-4-0653.

11. Digonnet S., Goulet N., Bourne J., Stevenson R., Archibald D., 2000. Petrology of the Abloviak Aillikite Dykes, New Québec: Evidence for a Cambrian Diamondiferous Alkaline Province in Northeastern North America. Canadian Journal of Earth Sciences 37 (4), 517–533. https://doi.org/10.1139/e00-008.

12. Doroshkevich A., Prokopyev I., Kruk M., Sharygin V., Izbrodin I., Starikova A., Ponomarchuk A., Izokh A., Nugumanova Y., 2022. Age and Petrogenesis of Ultramafic Lamprophyres of the Arbarastakh Alkaline-Carbonatite Complex, Aldan-Stanovoy Shield, South of Siberian Craton (Russia): Evidence for Ultramafic Lamprophyre-Carbonatite Link. Journal of Petrology 63 (9), egac073. https://doi.org/10.1093/petrology/egac073.

13. Doroshkevich A.G., Veksler I.V., Izbrodin I.A., Ripp G.S., Khromova E.A., Posokhov V.F., Travin A.V., Vladykin N.V., 2016. Stable Isotope Composition of Minerals in the Belaya Zima Plutonic Complex, Russia: Implications for the Sources of the Parental Magma and Metasomatizing Fluids. Journal of Asian Earth Sciences 116, 81–96. https://doi.org/10.1016/j.jseaes.2015.11.011.

14. Downes P.J., Wartho J.-A., Griffin B.J., 2006. Magmatic Evolution and Ascent History of the Aries Micaceous Kimberlite, Central Kimberley Basin, Western Australia: Evidence from Zoned Phlogopite Phenocrysts, and UV Laser 40Ar/39Ar Analysis of Phlogopite–Biotite. Journal of Petrology 47 (9), 1751–1783. https://doi.org/10.1093/petrology/egl026.

15. Frolov A.A., Belov S.V., 1999. Complex Carbonatite Deposits of the Zima Ore Region (Eastern Sayan, Russia). Geology of Ore Deposits 41 (2), 109–130 (in Russian)

16. Giuliani A., Pearson D.G., Soltys A., Dalton H., Phillips D., Foley S. F., Lim E., Goemann K., Griffin W.L., Mitchell R.H., 2020. Kimberlite Genesis from a Common Carbonate-Rich Primary Melt Modified by Lithospheric Mantle Assimilation. Science Advances 6 (17), eaaz0424. https://doi.org/10.1126/sciadv.aaz0424.

17. Giuliani A., Phillips D., Kamenetsky V.S., Goemann K., 2016. Constraints on Kimberlite Ascent Mechanisms Revealed by Phlogopite Compositions in Kimberlites and Mantle Xenoliths. Lithos 240–243, 189–201. https://doi.org/10.1016/j.lithos.2015.11.013.

18. Giuliani A., Phillips D., Kamenetsky V.S., Kendrick M.A., Wyatt B.A., Goemann K., Hutchinson G., 2014. Petrogenesis of Mantle Polymict Breccias: Insights into Mantle Processes Coeval with Kimberlite Magmatism. Journal of Petrology 55 (4), 831–858. https://doi.org/10.1093/petrology/egu008.

19. Gladkochub D.P., Mazukabzov A.M., Stanevich A.M., Donskaya T.V., Motova Z.L., Vanin V.A., 2014. Precambrian Sedimentation in the Urik-Iya Graben, Southern Siberian Craton: Main Stages and Tectonic Settings. Geotectonics 48, 359–370. https://doi.org/10.1134/S0016852114050033.

20. Hall D.C., Helmstaedt H., Schulze D.J., 1986. The Cross Diatreme, British Columbia, Canada: A Kimberlite in a Young Orogenic Belt. In: Extended Abstracts of the Fourth International Kimberlite Conference (August 11–15, 1986, Perth, Western Australia). Geological Society of Australia Abstracts Series 16, p. 30–32. https://doi.org/10.29173/ikc1063.

21. Henry D.J., Guidotti C.V., Thompson J.A., 2005. The Ti-Saturation Surface for Low-to-Medium Pressure Metapelitic Biotites: Implications for Geothermometry and Ti-Substitution Mechanisms. American Mineralogist 90 (2–3), 316–328. https://doi.org/10.2138/am.2005.1498.

22. Jerram D.A., Martin V.M., 2008. Understanding Crystal Populations and Their Significance through the Magma Plumbing System. In: C. Annen, G.G. Zellmer (Eds), Dynamics of Crustal Magma Transfer, Storage and Differentiation. Geological Society of London Special Publications 304, p. 133–148. https://doi.org/10.1144/SP304.7.

23. Kargin A., Bussweiler Y., Nosova A., Sazonova L., Berndt J., Klemme S., 2021. Titanium‑Rich Metasomatism in the Lithospheric Mantle beneath the Arkhangelsk Diamond Province, Russia: Insights from Ilmenite‑Bearing Xenoliths and HP–HT Reaction Experiments. Contributions to Mineralogy and Petrology 176, 101. https://doi.org/10.1007/s00410-021-01863-9.

24. Kargin A.V., Golubeva Y.Y., Demonterova E.I., Koval’chuk E.V., 2017. Petrographic-Geochemical Types of Triassic Alkaline Ultramafic Rocks in the Northern Anabar Province, Yakutia, Russia. Petrology 25, 535–565. https://doi.org/10.1134/S0869591117060030.

25. Kargin A.V., Nosova A.A., Postnikov A.V., Chugaev A.V., Postnikova O.V., Popova L.P., Poshibaev V.V., Sazonova L.V., Dokuchaev A.Ya., Smirnova M.D., 2016. Devonian Ultramafic Lamprophyre in the Irkineeva–Chadobets Trough in the Southwest of the Siberian Platform: Age, Composition, and Implications for Diamond Potential Prediction. Geology of Ore Deposits 58, 383–403. https://doi.org/10.1134/S1075701516050068.

26. Kargin A.V., Sazonova L.V., Nosova A.A., Lebedeva N.M., Kostitsyn Yu.A., Kovalchuk E.V., Tretyachenko V.V., Tikhomirova Ya.S., 2019. Phlogopite in Mantle Xenoliths and Kimberlite from the Grib Pipe, Arkhangelsk Province, Russia: Evidence for Multi-Stage Mantle Metasomatism and Origin of Phlogopite in Kimberlite. Geoscience Frontiers 10 (5), 1941–1959. https://doi.org/10.1016/j.gsf.2018.12.006.

27. Khromova E.A., Doroshkevich A.G., Izbrodin I.A., 2020. Geochemical and Sr-Nd-Pb Isotopic Characteristics of Alkaline Rocks and Carbonatite of the Belaya Zima Massif (Eastern Sayan). Geosphere Research 1, 33–35 (in Russian) https://doi.org/10.17223/25421379/14/3.

28. Kostrovitsky S.I., Yakovlev D.A., Sharygin I.S., Gladkochub D.P., Donskaya T.V., Tretiakova I.G., Dymshits A.M., Sekerin A.P., Malkovets V.G., 2022. Diamondiferous Lamproites of Ingashi Field, Siberian Craton. In: L. Krmíček, N.V. Chalapathi Rao (Eds), Lamprophyres, Lamproites and Related Rocks: Tracers to Supercontinent Cycles and Metallogenesis. Geological Society of London Special Publications 513, p. 45–70. https://doi.org/10.1144/SP513-2020-274.

29. Kuzmin M.I., Yarmolyuk V.V., 2014. Mantle Plumes of Central Asia (Northeast Asia) and Their Role in Forming Endogenous Deposits. Russian Geology and Geophysics 55 (2), 120–143. https://doi.org/10.1016/j.rgg.2014.01.002.

30. Menezes S.G., Azzone R.G., Rojas G.E.E., Ruberti E., Cagliarani R., Gomes C.B., Chmyz L., 2015. The Antecryst Compositional Influence on Cretaceous Alkaline Lamprophyre Dykes, SE Brazil. Brazilian Journal of Geology 45 (1), 79–93. https://doi.org/10.1590/23174889201500010006.

31. Minaeva Yu.A., Egorov K.N., 2008. Mineralogical and Petrographic Features of a Kimberlite-Picrite Dike in the North-Western Part of the Urik-Iya Graben (Eastern Sayan Region). Zapiski RMO 137 (3), 23–39 (in Russian)

32. Mitchell R.H., 1995. Kimberlites, Orangeites, and Related Rocks. Springer, New York, 410 p. https://doi.org/10.1007/978-1-4615-1993-5.

33. Namur O., Hatert F., Grandjean F., Long G.J., Krins N., Fransolet A.-M., Vander Auvera J., Charlier B., 2009. Ti Substitution Mechanisms in Phlogopites from the Suwalki Massif-Type Anorthosite, NE Poland. European Journal of Mineralogy 21 (2), 397–406. https://doi.org/10.1127/0935-1221/2009/0021-1894.

34. Nosova A.A., Kargin A.V., Sazonova L.V., Dubinina E.O., Chugaev A.V., Lebedeva N.M., Yudin D.S., Laionova Y.O., Abersteiner A., Gareev B.I., Batalin G.A., 2020. Sr-Nd-Pb Isotopic Systematic and Geochronology of Ultramafic Alkaline Magmatism of the Southwestern Margin of the Siberian Craton: Metasomatism of the Sub-Continental Lithospheric Mantle Related to Subduction and Plume Events. Lithos 364–365, 105509. https://doi.org/10.1016/j.lithos.2020.105509.

35. Nosova A.A., Kopylova M.G., Sazonova L.V., Vozniak A.A., Kargin A.V., Lebedeva N.M., Volkova G.D., Peresetskaya E.V., 2021. Petrology of Lamprophyre Dykes in the Kola Alkaline Carbonatite Province (N Europe). Lithos 398–399, 106277. https://doi.org/10.1016/j.lithos.2021.106277.

36. Odintsov M.M., Tverdokhlebov V.A., Vladimirov B.M., Ilyukhina A.V., Kolesnikova T.P., Konev A.A., 1962. Structure, Volcanism and Diamond Content of the Irkutsk Amphitheater. Publishing House of the USSR Academy of Science, Moscow, 180 p. (in Russian)

37. Ogungbuyi P.I., Janney P.E., Harris C., 2022. Carbonatite, Aillikite and Olivine Melilitite from Zandkopsdrift, Namaqualand, South Africa: Constraints on the Origin of an Unusual Lamprophyre-Dominated Carbonatite Complex and the Nature of Its Mantle Source. Lithos 418–419, 106678. https://doi.org/10.1016/j.lithos.2022.106678.

38. Petrova Z.I., Levitskiy V.I., 1984. Petrology and Geochemistry of Granulite Complexes in the Baikal Region. Nauka, Novosibirsk, 200 p. (in Russian)

39. Prokopyev I., Starikova A., Doroshkevich A., Nugumanova Y., Potapov V., 2020. Petrogenesis of Ultramafic Lamprophyres from the Terina Complex (Chadobets Upland, Russia): Mineralogy and Melt Inclusion Composition. Minerals 10 (5), 419. https://doi.org/10.3390/min10050419.

40. Putirka K.D., 2017. Down the Crater: Where Magmas Are Stored and Why They Erupt. Elements 13 (1), 11–16. https://doi.org/10.2113/gselements.13.1.11.

41. Salnikova E.B., Chakhmouradian A.R., Stifeeva M.V., Reguir E.P., Kotov A.B., Gritsenko Y.D., Nikiforov A.V., 2019. Calcic Garnets as a Geochronological and Petrogenetic Tool Applicable to a Wide Variety of Rocks. Lithos 338–339, 141–154. https://doi.org/10.1016/j.lithos.2019.03.032.

42. Savel’eva V.B., Danilova Yu.V., Bazarova E.P., Danilov B.S., 2020. Kimberlite-like Rocks of the Urik-Iya Graben, Eastern Sayan Region: Mineral Composition, Geochemistry and Formation Conditions. Geodynamics & Tectonophysics 11 (4), 678–696 (in Russian) https://doi.org/10.5800/GT-2020-11-4-0500.

43. Savelieva V.B., Bazarova E.P., Danilova Yu.V., Danilov B.S., 2022a. Geochemical Features of Dike Aillikites and Alkaline Rocks of the Bolshetagninsky Massif (Urik-Iya Graben, East Sayan Region). Geodynamics & Tectonophysics 13 (2), 0614 (in Russian) https://doi.org/10.5800/GT-2022-13-2s-0614.

44. Savelyeva V.B., Danilova Yu.V., Letnikov F.A., Demonterova E.I., Yudin D.S., Bazarova E.P., Danilov B.S., Sharygin I.S., 2022b. Age and Melt Sources of Ultramafic Dykes and Rocks of the Bolshetagninskii Alkaline Carbonatite Massif (Urik-Iya Graben, SW Margin of the Siberian Craton). Doklady Earth Sciences 505, 452–458. https://doi.org/10.1134/S1028334X22070169.

45. Sharma A., Pandey R., Chalapathi Rao N.V., Sahoo S., Belyatsky B.V., Dhote P., 2023. Mineralogy and Petrology of Lamprophyre and Dolerite Dykes from the End‑Cretaceous (~66 Ma) Phenaimata Alkaline Igneous Complex, North‑Western India: Evidence for Open Magma Chamber Fractionation, Mafic Recharge, and Disaggregation of Crystal Mush Zone in a Large Igneous Province. Mineralogy and Petrology 117, 415–445. https://doi.org/10.1007/s00710-021-00770-y.

46. Shchukina E.V., Agashev A.M., Kostrovitsky S.I., Pokhilenko N.P., 2015. Metasomatic Processes in the Lithospheric Mantle beneath the V. Grib Kimberlite Pipe (Arkhangelsk Diamondiferous Province, Russia). Russian Geology and Geophysics 56 (12), 1701-1716. https://doi.org/10.1016/j.rgg.2015.11.004.

47. Sizykh А.I., 1987. Precambrian Period of the Biryusa Metamorphic Belt. ISU Publishing House, Irkutsk, 240 p. (in Russian)

48. Smith J.V., Brennesholtz R., Dawson J.B., 1978. Chemistry of Micas from Kimberlites and Xenoliths–I. Micaceous Kimberlites. Geochimica et Cosmochimica Acta 42 (7), 959–971. https://doi.org/10.1016/0016-7037(78)90285-5.

49. Sobolev N.V., Logvinova A.M., Efimova E.S., 2010. Syngenetic Phlogopite Inclusions in Kimberlite-Hosted Diamonds: Implications for Role of Volatiles in Diamond Formation. Russian Geology and Geophysics 50 (12), 1234–1248. https://doi.org/10.1016/j.rgg.2009.11.021.

50. Sokol A.G., Kruk A.N., 2021. Role of CO2 in the Evolution of Kimberlite Magma: Experimental Constraints at 5.5 GPa and 1200–1450 °C. Lithos 386–387, 106042. https://doi.org/10.1016/j.lithos.2021.106042.

51. Solov’eva L.V., Egorov K.N., Markova M.E., Kharkiv A.D., Popolitov K.E., Barankevich V.G., 1997. Mantle Metasomatism and Melting in Deep-Seated Xenoliths from the Udachnaya Pipe, Their Possible Relationship with Diamond and Kimberlite Formation. Russian Geology and Geophysics 38 (1), 172–193 (in Russian)

52. Solov’eva L.V., Yasnygina T.A., Egorov K.N., 2012. Metasomatic Parageneses in Deep-Seated Xenoliths from Pipes Udachnaya and Komsomol’skaya-Magnitnaya as Indicators of Fluid Transfer through the Mantle Lithosphere of the Siberian Craton. Russian Geology and Geophysics 53 (12), 1304–1323. https://doi.org/10.1016/j.rgg.2012.10.004.

53. Srivastava R.K., 2013. Petrological and Geochemical Characteristics of Paleoproterozoic Ultramafic Lamprophyres and Carbonatites from the Chitrangi Region, Mahakoshal Supracrustal Belt, Central India. Journal of Earth System Science 122, 759–776. https://doi.org/10.1007/s12040-013-0311-1.

54. Stifeeva M.V., Salnikova E.B., Savelyeva V.B., Kotov A.B., Danilova Y.V., Bazarova E.P., Danilov B.S., 2023. Timing of Carbonatite Ultramafic Complexes of the Eastern Sayan Alkaline Province, Siberia: U-Pb (ID–TIMS) Geochronology of Ca-Fe Garnets. Minerals 13 (8), 1086. https://doi.org/10.3390/min13081086.

55. Sudholz Z.J., Reddicliffe T.H., Jaques A.L., Yaxley G.M., Haynes M., Gorbatov A., Czarnota K., Frigo C., Maas R., Knowles B., 2023. Petrology, Age, and Rift Origin of Ultramafic Lamprophyres (Aillikites) at Mount Webb, a New Alkaline Province in Central Australia. Geochemistry, Geophysics, Geosystems 24 (10), e2023GC011120. https://doi.org/10.1029/2023GC011120.

56. Tappe S., Foley S.F., Jenner G.A., Heaman L.M., Kjarsgaard B.A., Romer R.L., Stracke A., Joyce N., Hoefs J., 2006. Genesis of Ultramafic Lamprophyres and Carbonatites at Aillik Bay, Labrador: A Consequence of Incipient Lithospheric Thinning beneath the North Atlantic Craton. Journal of Petrology 47 (7), 1261–1315 https://doi.org/10.1093/petrology/egl008.

57. Tappe S., Foley S.F., Jenner G.A., Kjarsgaard B., 2005. Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology 46 (9), 1893–1900. https://doi.org/10.1093/petrology/egi039.

58. Tappe S., Foley S.F., Kjarsgaard B.A., Romer R.L., Heaman L.M., Stracke A., Jenner G.A., 2008. Between Carbonatite and Lamproite-Diamondiferous Torngat Ultramafic Lamprophyres Formed Bycarbonate-Fluxed Melting of Cratonic MARID-Type Metasomes. Geochimica et Cosmochimica Acta 72 (13), 3258–3286. https://doi.org/10.1016/j.gca.2008.03.008.

59. Tappe S., Jenner G.A., Foley S.F., Heaman L., Besserer D., Kjarsgaard B.A., Ryan B., 2004. Torngat Ultramafic Lamprophyres and Their Relation to the North Atlantic Alkaline Province. Lithos 76 (1–2). 491–518. https://doi.org/10.1016/j.lithos.2004.03.040.

60. Ubide T., Galé C., Larrea P., Arranz E., Lago M., 2014. Antecrysts and Their Effect on Rock Compositions: The Cretaceous Lamprophyre Suite in the Catalonian Coastal Ranges (NE Spain). Lithos 206–207, 214–233. https://doi.org/10.1016/j.lithos.2014.07.029.

61. Upton B.G.J., Craven J.A., Kirstein L.A., 2006. Crystallisation of Mela-Aillikites of the Narsaq Region, Gardar Alkaline Province, South Greenland and Relationships to Other Aillikitic–Carbonatitic Associations in the Province. Lithos 92 (1–2), 300–319. https://doi.org/10.1016/j.lithos.2006.03.046.

62. Warr L.N., 2021. IMA–CNMNC Approved Mineral Symbols. Mineralogical Magazine 85 (3), 291–320. https://doi.org/10.1180/mgm.2021.43.

63. Yarmolyuk V.V., Kovalenko V.I., Kovach V.P., Rytsk E.Yu., Kozakov I.K., Kotov A.B., Sal’nikova E.B., 2006. Early Stages of the Paleoasian Ocean Formation: Results of Geochronological, Isotopic, and Geochemical Investigations of Late Riphean and Vendian–Cambrian Complexes in the Central Asian Foldbelt. Doklady Earth Sciences 411, 1184–1189. https://doi.org/10.1134/S1028334X06080046.

64. Yarmolyuk V.V., Kovalenko V.I., Salnikova E.B., Nikiforov A.V., Kotov A.B., Vladykin N.V., 2005. Late Riphean Rifting and Breakup of Laurasia: Data on Geochronological Studies of Ultramafic Alkaline Complexes in the Southern Framing of the Siberian Craton. Doklady Earth Sciences 404 (7), 1031–1036.

65. Zhmodik S.M., Ashchepkov I.V., Belyanin D.K., Ayriyants E.V., Kiseleva O.N., Ponomarchuk V.A., 2022. Sequence of Aillikite and Calcite Carbonatite Formation within the Belaya Zima Massif, East Siberia, Russia. Geodynamics & Tectonophysics 13 (4), 0654 (in Russian) https://doi.org/10.5800/GT-2022-13-4-0654.

66. Zozulya D.R., Kullerud K., Ribacki E., Altenberger U., Sudo M., Savchenko Y.E., 2020. The Newly Discovered Neoproterozoic Aillikite Occurrence in Vinoren (Southern Norway): Age, Geodynamic Position and Mineralogical Evidence of Diamond-Bearing Mantle Source. Minerals 10 (11), 1029. https://doi.org/10.3390/min10111029.


Supplementary files

1. Savelyeva_et_al_Suppl_1.xlsx
Subject
Type Исследовательские инструменты
Download (115KB)    
Indexing metadata ▾

Review

For citations:


Savelyeva V.B., Danilova Yu.V., Bazarova E.P., Danilov B.S., Khromova E.A. MICA COMPOSITION REFLECTING CONDITIONS OF AILLIKITE FORMATION IN ZIMA COMPLEX OF EASTERN SIBERIA. Geodynamics & Tectonophysics. 2024;15(5):0786. (In Russ.) https://doi.org/10.5800/GT-2024-15-5-0786. EDN: OAGAKW

Views: 298


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)