АНАЛИЗ ПОДЗЕМНОГО ПРОСТРАНСТВА ГОРОДА БАНДАР-ЛАМПУНГ НА ОСНОВЕ ГРАВИТАЦИОННЫХ АНОМАЛИЙ
https://doi.org/10.5800/GT-2024-15-4-0772
EDN: FWESLM
Аннотация
Город Бандар-Лампунг расположен на юго-восточной оконечности о. Суматра, в районе с высоким уровнем подверженности землетрясениям и цунами. По всей длине о. Суматра, вдоль горного хребта Букит-Барисан, проходят сейсмические разломы. Одним из таких разломов в районе Бандар-Лампунг является разлом Панджанг-Лампунг. Гравитационные методы, обычно используемые для определения подземных пространств, основываются на изменении плотности пород. Цель данного исследования – выявление структуры подземного пространства г. Бандар-Лампунг на основе 2D и 3D моделирования гравитационных аномалий. Исследование состоит из трех основных стадий: коррекции данных, обработки данных (включая спектральный анализ, скользящее среднее и анализ вторых вертикальных производных), а также моделирования подземного пространства. Полные аномалии Буге изучаемой территории варьируются в пределах 41.9–73.3 мГал. Результаты моделирования указывают на наличие таких структур, как разлом Панджанг-Лампунг в северной части и грабен в центральной части, подтвержденное анализом вторых вертикальных производных и геологическими данными. Существование разлома Панджанг-Лампунг, классифицируемого в качестве активного разлома, наряду с вулканическими пирокластическими породами и достаточно мощными слоями осадочных пород, способствует потенциальному усилению подземных толчков на изучаемой территории в случае возникновения землетрясения.
Ключевые слова
Об авторах
И. ДаниИндонезия
35141, Бандар-Лампунг
А. Заенудин
Индонезия
35141, Бандар-Лампунг
А. И. Хутомо
Индонезия
35141, Бандар-Лампунг
Н. Юниза
Индонезия
35141, Бандар-Лампунг
Список литературы
1. Akinin V.V., Zhulanova I.L., 2016. Age and Geochemistry of Zircon from the Oldest Metamorphic Rocks of the Omolon Massif (Northeast Russia). Geochemistry International 54, 651–659. https://doi.org/10.1134/S0016702916060021.
2. Ali U., Ali S.A., 2020. Comparative Response of Kashmir Basin and Its Surroundings to the Earthquake Shaking Based on Various Site Effects. Soil Dynamics and Earthquake Engineering 132, 106046. https://doi.org/10.1016/j.soildyn.2020.106046.
3. Bandar Lampung Municipality in Figures, 2023. BPSStatistics Indonesia.
4. Calais E., Camelbeeck T., Stein S., Liu M., Craig T.J., 2016. A New Paradigm for Large Earthquakes in Stable Continental Plate Interiors. Geophysical Research Letters 43 (20), 10621–10637. https://doi.org/10.1002/2016GL070815.
5. Diambama A.D., Anggraini A., Nukman M., Lühr B.G., Suryanto W., 2019. Velocity Structure of the Earthquake Zone of the M6.3 Yogyakarta Earthquake 2006 from a Seismic Tomography Study. Geophysical Journal International 216 (1), 439–452. https://doi.org/10.1093/gji/ggy430.
6. Elkins T.A., 1951. The Second Derivative Method of Gravity Interpretation. Geophysics16 (1), 29–50. https://doi.org/10.1190/1.1437648.
7. Elliott J.R., de Michele M., Gupta H.K., 2020. Earth Observation for Crustal Tectonics and Earthquake Hazards. Surveys in Geophysics 41, 1355–1389. https://doi.org/10.1007/s10712-020-09608-2.
8. Elliott J.R., Walters R.J., Wright T.J., 2016. The Role of Space-Based Observation in Understanding and Responding to Active Tectonics and Earthquakes. Nature Communications 7 (1), 13844. https://doi.org/10.1038/ncomms13844.
9. Elnashai A.S., Kim S.J. Yun G.J., Sidarta D., 2007. The Yogyakarta Earthquake of May 27 2006. MAE Center Report No 07-02. Mid-America Earthquake Center, Urban, IL, USA, 57 p.
10. Gao J., Yu Y., Song W., Gao S.S., Liu K.H., 2020. Crustal Modifications beneath the Central Sunda Plate Associated with the Indo-Australian Subduction and the Evolution of the South China Sea. Physics of the Earth and Planetary Interiors 306, 106539. https://doi.org/10.1016/j.pepi.2020.106539.
11. Grandis H., Dahrin D., 2017. The Utility of Free Software for Gravity and Magnetic Advanced Data Processing. IOP Conference Series: Earth and Environmental Science 62, 012046. https://doi.org/10.1088/1755-1315/62/1/012046.
12. Iqbal P., Wibowo D.A., Raharjo P.D., Lestiana H., Puswanto E., 2023. The Great Sumatran Fault Depression at West Lampung District, Sumatra, Indonesia as Geomorphosite for Geohazard Tourism. GeoJournal of Tourism and Geosites 47 (2), 476–485. https://doi.org/10.30892/gtg.47214-1046.
13. Kumar K.S., Rajesh R., Tiwari R.K., 2018. Regional and Residual Gravity Anomaly Separation Using the Singular Spectrum Analysis-Based Low Pass Filtering: A Case Study from Nagpur, Maharashtra, India. Exploration Geophysics 49 (3), 398–408, https://doi.org/10.1071/EG16115.
14. Lücke O.H., Arroyo I.G., 2015. Density Structure and Geometry of the Costa Rican Subduction Zone from 3-D Gravity Modeling and Local Earthquake Data. Solid Earth 6 (4), 1169–1183. https://doi.org/10.5194/se-6-1169-2015.
15. Mangga S.A. et al., 1993. Geological map of the Tanjung Karang quadrangle, Sumatera. Geological Research and Development Center, Bandung, Indonesia.
16. Maunde A., Rufa’i F.A., Raji A.S., Saleh M.B., 2017. Determination of Subsurface Bulk Density Distribution for Geotechnical Investigation Using Gravity Technique. Journal of Earth Sciences and Geotechnical Engineering 7 (2), 63–69.
17. Mulyasari R., Utama H.W., Haerudin N., 2019. Geomorphology Study on the Bandar Lampung Capital City for Recommendation of Development Area. IOP Conference Series: Earth and Environmental Science 279, 012026. https://doi.org/10.1088/1755-1315/279/1/012026.
18. Naryanto H.S., 2008. Analisis Potensi Kegempaan dan Tsunami di Kawasan Pantai Barat Lampung Kaitannya Dengan Mitigasi dan Penataan Kawasan. Jurnal Sains dan Teknologi Indonesia 10 (2), 71–77. DOI:10.29122/jsti.v10i2.797.
19. Nielsen S., Spagnuolo E., Violay M., Smith S., Di Toro G., Bistacchi A., 2016. G: Fracture Energy, Friction and Dissipation in Earthquakes. Journal of Seismology 20, 1187–1205. https://doi.org/10.1007/s10950-016-9560-1.
20. Ombati D., Githiri J., K’Orowe M., Nyakundi E., 2022. Delineation of Subsurface Structures Using Gravity Data of the Shallow Offshore, Lamu Basin, Kenya. International Journal of Geophysics 2022 (1), 3024977. https://doi.org/10.1155/2022/3024977.
21. Parasnis D.S., 1986. Principles of Applied Geophysics. Chapman and Hall, New York, 402 p. https://doi.org/10.1007/978-94-009-4113-7.
22. Paris R., Goto K., Goff J., Yanagisawa H., 2020. Advances in the Study of Mega-Tsunamis in the Geological Record. Earth-Science Reviews 210, 103381. https://doi.org/10.1016/j.earscirev.2020.103381.
23. Rubin C.M., Horton B.P., Sieh K., Pilarczyk J.E., Daly P., Ismail N., Parnell A.C., 2017. Highly Variable Recurrence of Tsunamis in the 7,400 Years before the 2004 Indian Ocean Tsunami. Nature Communications 8, 16019. https://doi.org/10.1038/ncomms16019.
24. Rustadi, Rananda E., 2020. Rock Formation and Site Class in Bandar Lampung. Jurnal Geofisika Eksplorasi 6 (3), 183–189. https://doi.org/10.23960/jge.v6i3.101.
25. Salisbury M.J., Patton J.R., Kent A.J.R., Goldfinger C., Djadjadihardja Y., Hanifa U., 2012. Deep-Sea Ash Layers Reveal Evidence for Large, Late Pleistocene and Holocene Explosive Activity from Sumatra, Indonesia. Journal of Volcanology and Geothermal Research 231–232, 61–71. https://doi.org/10.1016/j.jvolgeores.2012.03.007.
26. Setiawan N.I., Onasai Y., Nakano N., Adachi T., Yunemura K., Yoshimoto A., Wahyudiono J., 2013. Metamorphic Rocks of Central Indonesia: Overview: Importance of Metamorphic Belts Distributed in Southern Sulawesi, Central Java, and Southern and Western Kalimantan. Bulletin of the Graduate School of Social and Cultural Studies 19, 39–55. https://doi.org/10.15017/26209.
27. Siringoringo L.P., Sapiie B., Rudyawan A., Sucipta I.G.B.E., 2023. Subsurface Delineation of Sukadana Basalt Province Based on Gravity Method, Lampung, Indonesia. Lithosphere 23 (6), 1027–1037 (in Russian) [Сирингоринго Л.П., Сапийе Б., Рудьяван А., Сусипта И.Г.Б.Е. Приповерхностная характеристика базальтов провинции Сукадана на основе гравитационного метода (Лампунг, Индонезия). Литосфера. 2023. Т. 23. № 6. С. 1027–1037]. https://doi.org/10.24930/1681-9004-2023-23-6-1027-1037.
28. Susilorini R.M.R., Febrina R., Fitra H.A., Rajagukguk J., Wardhani D.K., Wastanimpuna B.Y.A., Prameswari L.L.N., 2021. Knowledge, Awareness, and Resilience of Earthquake and Tsunami Disaster Risk Reduction in Coastal Area. Journal of Physics: Conference Series 1811, 012108. https://doi.org/10.1088/1742-6596/1811/1/012108.
29. Telford W.M., Geldart L.P., Sheriff R.E., 1990. Applied Geophysics. Second Edition. Cambridge University Press, Cambridge, 792 p. https://doi.org/10.1017/CBO9781139167932.
30. Vickers A., 2013. A History of Modern Indonesia. Cambridge University Press, 320 p. https://doi.org/10.1017/CBO9781139094665.
31. Zaenudin A., Dani I., Amalia N., 2020. Delineasi Sub-Cekungan Sorong Berdasarkan Anomali Gaya Berat. Jurnal Geocelebes 4 (1), 14–22. https://doi.org/10.20956/geocelebes.v4i1.7976.
Рецензия
Для цитирования:
Дани И., Заенудин А., Хутомо А.И., Юниза Н. АНАЛИЗ ПОДЗЕМНОГО ПРОСТРАНСТВА ГОРОДА БАНДАР-ЛАМПУНГ НА ОСНОВЕ ГРАВИТАЦИОННЫХ АНОМАЛИЙ. Геодинамика и тектонофизика. 2024;15(4):0772. https://doi.org/10.5800/GT-2024-15-4-0772. EDN: FWESLM
For citation:
Dani I., Zaenudin A., Hutomo A.I., Yuniza N. ANALYSIS OF SUBSURFACE STRUCTURE OF BANDAR LAMPUNG CITY BASED ON GRAVITY ANOMALIES. Geodynamics & Tectonophysics. 2024;15(4):0772. https://doi.org/10.5800/GT-2024-15-4-0772. EDN: FWESLM