ГЕНЕТИЧЕСКИЕ ИСТОЧНИКИ И ТЕКТОНОФИЗИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАЗНОРАНГОВОЙ БЛОКОВОЙ ДЕЛИМОСТИ ЛИТОСФЕРЫ НА РАЗЛИЧНЫХ ЭТАПАХ ЕЕ ФОРМИРОВАНИЯ: ТЕКТОНОФИЗИЧЕСКИЙ АНАЛИЗ
https://doi.org/10.5800/GT-2015-6-3-0187
Аннотация
Впервые проводится тектонофизическая реконструкция формирования первичной делимости протолитосферы в результате конвекции остывающей примитивной мантии. Формирующиеся в ней конвективные ячеи Рэлея-Бенара предопределяют размеры первичного разделения протолитосферы на отдельные массы – прообразы блоков. Ячеи Рэлея-Бенара не впервые используются в геологии и геодинамике. Первоначально на них ссылались для объяснения формирования первичных континентальных ядер. Обращение к ячеям Рэлея-Бенара и их структурным реликтам способствует пониманию того, как зарождается первичная делимость протолитосферы, которая трансформируется в крупные литосферные плиты – прообразы континентов. Именно консервирующиеся в формирующейся литосфере ячеи Рэлея-Бенара, нижняя граница которых корреспондировала с одним из главных разделов планеты – границей ядра, – предопределили первоначальную мегамасштабную блоковую структуру протолитосферы и формирующейся литосферы. Проведенные теоретические оценки сопоставлены и хорошо согласуются с количеством и размерами площадей первых гипотетических континентальных структур – суперконтинентов Ваальбара и Ура.
Продолжение тектонофизического разбора формирования блоковой структуры литосферы реализовано на детальном анализе карты современных литосферных плит [Bird, 2003] с привлечением фактических материалов [Shermanetal., 2000]. В широкой по размерам площадей иерархии блоков в современной литосфере Земли отчетливо выделяются две группы. Первая – мегаблоки, среднегеометрический размер которых превышает 6500 км. Их формирование на современном этапе геодинамического развития Земли, а также на всех предшествующих, в том числе и на самом раннем, при зарождении протолитосферы связано с конвекционными процессами в мантии Земли. Вторая группа – блоки со среднегеометрическим размером менее 4500 км, вплоть до минимального, соответствующего кусковатости горных пород, отражают, прежде всего, деструкцию мегаблоков в результате их разрушения под действием высоких внутренних напряжений, превышающих предел прочности среды. В этой же группе могут быть блоки, формирование которых также связано с конвекцией, охватывающей верхний мантийный уровень – астеносферу. Можно предполагать, что в громадном промежуточном интервале геологического времени, охватывающем суперциклы Кенорленд, Родинию и, частично, Пангею, формирование крупных литосферных блоков контролировалось конвекцией, а их дальнейшее «дробление» регулировалось физическими законами разрушения твердых тел. Однако четкую границу между процессами, определяющими иерархию формирования блоковых структур разного генезиса в прошедшие времена, провести трудно из-за неопределенности размеров литосферных блоков далекого прошлого.
Таким образом, конвекция в мантии является генетическим эндогенным источником первичной делимости остывающей верхней оболочки Земли, а также мегаблоковой делимости собственно литосферы в последующие этапы ее геодинамического развития. На современном этапе закономерности разномасштабной блоковой делимости литосферы прослеживаются на всех иерархических уровнях. Площади мегаплит литосферы – результат закономерных изменений конвективных процессов в мантии и их воздействия на формирование и кинематику плит; деструкция мегаплит на меньшие по площади блоки – результат закономерного дробления твердых тел литосферы при высоких напряжениях.
Ключевые слова
Об авторе
Семен Иойнович ШерманРоссия
академик Российской академии естественных наук, докт. геол.-мин. наук, профессор, г.н.с.,
664033, Иркутск, ул. Лермонтова, 128
Список литературы
1. Artemieva I.M., 2011. The lithosphere: An interdisciplinary approach. Cambridge University Press, Cambridge, 794 p.
2. Artemieva I.M., Mooney W.D., 2001. Thermal thickness and evolution of Precambrian lithosphere; a global study. Journal of Geophysical Research 106 (B8), 16387–16414. http://dx.doi.org/10.1029/2000JB900439.
3. Bak P., 1996. How Nature Works: The Science of Self-Organised Criticality. Copernicus Press, New York, 212 p.
4. Bird P., 1988. Formation of the Rocky Mountains, western United States: A continuum computer model. Science 239 (4847), 1501–1507. http://dx.doi.org/10.1126/science.239.4847.1501.
5. Bird P., 1998. Kinematic history of the Laramide orogeny in latitudes 35°–49°N, Western United States. Tectonics 17 (5), 780–801. http://dx.doi.org/10.1029/98TC02698.
6. Bird P., 2003. An updated digital model of plate boundaries. Geochemistry Geophysics Geosystems 4 (3), 1027. http://dx.doi.org/10.1029/2001GC000252.
7. Bird P., Kagan Y.Y., Jackson D.D., 2002. Plate tectonics and earthquake potential of spreading ridges and oceanic transform faults. In: S. Stein, J.T. Freymueller (Eds.), Plate Boundary Zones. AGU Geodynamics Series, vol. 30. AGU, Washington, D.C., p. 203–218. http://dx.doi.org/10.1029/GD030p0203.
8. Bird P., Rosenstock R.W., 1984. Kinematics of present crust and mantle flow in southern California. Geological Society of America Bulletin 95 (8), 946–957. http://dx.doi.org/10.1130/0016-7606(1984)95<946:KOPCAM>2.0.CO;2.
9. Busse F.H., Clever F.M., 1998. Asymmetric squares as an attracting set in Rayleigh-Benard convection. Physical Review Letters 81 (2), 341–344. http://dx.doi.org/10.1103/PhysRevLett.81.341.
10. Cheremnykh А.V., 1998. Tectonophysical Analysis of Fault-Block Divisibility of the Lithosphere in Southern Region of East Siberia. Thesis, PhD in Geology and Mineralogy. IEC SB RAS, Irkutsk, 206 p. (in Russian) [Черемных А.В. Тектонофизический анализ разломно-блоковой делимости литосферы юга Восточной Сибири: Дис. … канд. геол.-мин. наук. Иркутск: ИЗК СО РАН, 1998. 206 с.].
11. Clever R.M., Busse F.H., 1996. Hexagonal convection cells under conditions of vertical symmetry. Physical Review E 53 (3), R2037–R2040. http://dx.doi.org/10.1103/PhysRevE.53.R2037.
12. Dobretsov N.L., Kirdyashkin A.G., 1993. Experimental modeling of two-layer mantle convection. Ofioliti 18 (1), 61–81.
13. Dobretsov N.L., Kirdyashkin A.G., Kirdyashkin A.A., 2001. Deep Geodynamics. Second edition. GEO Branch, Publishing House of SB RAS, Novosibirsk, 409 p. (in Russian) [Добрецов Н.Л., Кирдяшкин А.Г., Кирдяшкин А.А. Глубинная геодинамика. 2-е дополн. изд. Новосибирск: Изд-во СО РАН, филиал «ГЕО», 2001. 409 с.].
14. Filippov A.F., 1962. On the scatter of particle sizes during fragmentation. In: The theory of probability and its application. Vol. VI, Iss. 3. Publishing House of the USSR Acad. Sci., Moscow, p. 14–19 (in Russian) [Филиппов А.Ф. О распределении размеров частиц при дроблении // Теория вероятностей и ее применения. М.: Изд-во АН СССР, 1962. Т. VI. Вып. 3. С. 14–19].
15. Getling A.V., 1998. Rayleigh–Bénard Convection: Structures and Dynamics. World Scientific, Singapore – New Jersey – Hong Kong, 245 p.
16. Hazen R.M., 2012. The Story of Earth: The First 4.5 Billion Years, from Stardust to Living Planet. Penguin Group, New York, 320 p.
17. Hofmann A.W., 1997. Mantle geochemistry: the message from oceanic volcanism. Nature 385 (6613), 219–229. http://dx.doi.org/10.1038/385219a0.
18. Honda S.A., 1995. Simple parameterized model of Earth’s thermal history with the transition from layered to whole mantle convection. Earth and Planetary Science Letters 131 (3–4), 357–369. http://dx.doi.org/10.1016/0012-821X(95)00034-A.
19. Kirdyashkin A.G., Dobretsov N.L., 1991. Modeling of the double-layered mantle convection. Doklady AN SSSR 318 (4), 946–949 (in Russian) [Кирдяшкин А.Г., Добрецов Н.Л. Моделирование двухслойной мантийной конвекции // Доклады АН СССР. 1991. T. 318. № 4. C. 946–949].
20. Kolmogorov A.N., 1941. On the log-normal law of distribution of particles during fragmentation. Doklady AN SSSR 31 (2), 99–101 (in Russian) [Колмогоров А.Н. О логарифмически-нормальном законе распределения частиц при дроблении // Доклады АН СССР. 1941. Т. 31. № 2. С. 99–101].
21. Kuz’min M.I., 2014. The Precambrian history of the origin and evolution of the Solar System and Earth. Part 1. Geodynamics & Tectonophysics 5 (3), 625–640 (in Russian) [Кузьмин М.И. Докембрийская история зарождения и эволюции Солнечной системы и Земли. Статья I // Геодинамика и тектонофизика. 2014. Т. 5. № 3. С. 625–640]. http://dx.doi.org/10.5800/GT-2014-5-3-0146.
22. Li Z.X., Bogdanova S.V., Collins A.S., Davidson A.B., Waele D., Ernst R.E., Fitzsimons I.C.W., Fuck R.A., Gladkochub D.P., Jacobs J., Karlstrom K.E., Lul S., Natapov L.M., Pease V., Pisarevsky S.A., Thrane K., Vernikovsky V., 2008. Assembly, configuration, and break-up history of Rodinia: A synthesis. Precambrian Research 160 (1–2), 179–210. http://dx.doi.org/10.1016/j.precamres.2007.04.021.
23. Lobkovsky L.I., 1988. Geodynamics of zones of spreading, subduction and double-layered plate tectonics. Nauka, Moscow, 252 p. (in Russian) [Лобковский Л.И. Геодинамика зон спрединга, субдукции и двухъярусная тектоника плит. М.: Наука, 1988. 252 с.].
24. Lobkovsky L.I., Kotelkin V.D., 2000. Double-layered thermo-chemical model of convection in the mantle and its geodynamic consequences. In: Problems of Global Geodynamics. GEOS, Moscow, p. 29–53 (in Russian) [Лобковский Л.И., Котелкин В.Д. Двухъярусная термохимическая модель конвекции в мантии и ее геодинамические следствия // Проблемы глобальной геодинамики. М.: ГЕОС, 2000. С. 29–53].
25. Lobkovsky L.I., Nikishin А.M., Khain V.Е., 2004. Modern Problems of Geotectonics and Geodynamics. Nauchny Mir, Moscow, 610 p. (in Russian) [Лобковский Л.И., Никишин А.М., Хаин В.Е. Современные проблемы геотектоники и геодинамики. М.: Научный мир, 2004. 610 с.].
26. Lubnina N.V., 2011. Supercontinents in the Earth's history (in Russian) [Лубнина Н.В. Суперконтиненты в истории Земли. 2011]. Available from: http://www.ises.su/2011/pdf_lectures/lubnina-lecture.pdf (last accessed June 22, 2015).
27. Maruyama S., 1994. Plume tectonics. The Journal of the Geological Society of Japan 100 (1), 24–49.
28. Molnar P., Freedmann D., Shih J.S.F., 1979. Length of intermediate and deep seismic zones and temperature in down going slabs of lithosphere. Geophysical Journal of the Royal Astronomical Society 56 (1), 41–54. http://dx.doi.org/10.1111/j.1365-246X.1979.tb04766.x.
29. Nebel O., Campbell I.H., Sossi P.A., Van Kranendonk M.J., 2014. Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth. Earth and Planetary Science Letters 397, 111–120. http://dx.doi.org/10.1016/j.epsl.2014.04.028.
30. Peive А.V., 1990. Selected Works. Deep Faults and Their Role in Construction and Development of the Earth's Crust. Nauka, Moscow, 352 p. (in Russian) [Пейве А.В. Избранные труды. Глубинные разломы и их роль в строении и развитии земной коры. М.: Наука, 1990. 352 с.].
31. Pekeris G.L., 1935. Thermal convection in the interior of the Earth. Monthly Notices of the Royal Astronomical Society, Geophysical Supplements 3 (suppl. 8), 343–367. http://dx.doi.org/10.1111/j.1365-246X.1935.tb01742.x.
32. Rykov V.V., Trubitsyn V.P., 1994a. Digital modeling of mantle convection and tectonics of continental plates. In: Geodynamics and earthquake prediction. Computational Seismology, vol. 26. Nauka, Moscow, p. 94–102 (in Russian) [Рыков В.В., Трубицын В.П. Численное моделирование мантийной конвекции и тектоники континентальных плит // Геодинамика и прогноз землетрясений. Вычислительная сейсмология. Вып. 26. М.: Наука, 1994. C. 94–102].
33. Rykov V.V., Trubitsyn V.P., 1994b. A three-dimensional model of mantle convection with mobile continents. In: Theoretical problems of geodynamics and seismicity. Computational Seismology, vol. 27. Nauka, Moscow, p. 21–41 (in Russian) [Рыков В.В., Трубицын В.П. Трехмерная модель мантийной конвекции с движущимися континентами // Теоретические проблемы геодинамики и сейсмологии. Вычислительная сейсмология. Вып. 27. М.: Наука, 1994. C. 21–41].
34. Sadovsky M.A., Bolkhovitinov L.G., Pisarenko V.F., 1987. Deformation of Geophysical Medium and Seismic Process. Nauka, Moscow, 100 p. (in Russian) [Садовский М.А., Болховитинов Л.Г., Писаренко В.Ф. Деформирование геофизической среды и сейсмический процесс. М.: Наука, 1987. 100 с.].
35. Sadovsky M.A., Pisarenko V.F., 1991. Seismic process in the block environment. Nauka, Moscow, 96 p.
36. Schubert G., Turcotte D.L., Olson P., 2001. Mantle convection in the Earth and Planets. Cambridge University Press, Cambridge, 940 p.
37. Seminsky K.Zh., 2001. Tectonophysical regularities of destruction of the lithosphere as exemplified by the Himalayan compression zone. Tikhookeanskaya geologiya 20 (6), 17–30 (in Russian) [Семинский К.Ж. Тектонофизические закономерности деструкции литосферы на примере Гималайской зоны сжатия // Тихоокеанская геология. 2001. Т. 20. № 6. С. 17–30].
38. Seminsky K.Zh., 2003. The Internal Structure of Continental Fault Zones. Tectonophysical Aspect. GEO Branch, Publishing House of SB RAS, Novosibirsk, 244 p. (in Russian) [Семинский К.Ж. Внутренняя структура континентальных разломных зон. Тектонофизический аспект. Новосибирск: Изд-во СО РАН, филиал «ГЕО», 2003. 244 с.].
39. Sherman S.I., 1977. Physical Regularities of Faulting in the Earth's Crust. Nauka, Moscow, 102 с. (in Russian) [Шерман С.И. Физические закономерности развития разломов земной коры. Новосибирск: Наука, 1977. 102 с.].
40. Sherman S.I., 2002. Development of M.V. Gzovsky's concepts in recent tectonophysical studies of faulting and seismicity in the lithosphere. In: Tectonophysics today (to the Jubilee of M.V. Gzovsky). Institute of Physics of the Earth, Moscow, p. 49–59 (in Russian) [Шерман С.И. Развитие представлений М.В. Гзовского в современных тектонофизических исследованиях разломообразования и сейсмичности в литосфере // Тектонофизика сегодня (к юбилею М.В. Гзовского). М.: Институт физики Земли РАН, 2002. С. 49–59].
41. Sherman S.I., 2012. Destruction of the lithosphere: Fault-block divisibility and its tectonophysical regularities. Geodynamics & Tectonophysics 3 (4), 315–344 (in Russian) [Шерман С.И. Деструкция литосферы: разломно-блоковая делимость и ее тектонофизические закономерности // Геодинамика и тектонофизика. 2012. Т. 3. № 4. С. 315–344]. http://dx.doi.org/10.5800/GT-2012-3-4-0077.
42. Sherman S.I., 2014a. Seismic Process and the Forecast of Earthquakes: Tectonophysical Conception. Academic Publishing House “Geo”, Novosibirsk, 359 p. (in Russian) [Шерман С.И. Сейсмический процесс и прогноз землетрясений: тектонофизическая концепция. Новосибирск: Академическое издательство «Гео», 2014. 359 с.].
43. Sherman S.I., 2014b. Tectonophysical regularities of destruction of the continental lithosphere of the Earth. In: Geodynamic evolution of the lithosphere in the Central Asian mobile belt: from ocean to continent. Issue 12. Institute of the Earth’s crust SB RAS, Irkutsk, p. 333–336 (in Russian) [Шерман С.И. Тектонофизические закономерности деструкции континентальной литосферы Земли // Геодинамическая эволюция литосферы Центрально-Азиатского подвижного пояса: от океана к континенту. Вып. 12. Иркутск: ИЗК СО РАН, 2014. C. 333–336].
44. Sherman S.I., Lysak S.V., Dem’yanovich V.M., 2004. Active faults, seismicity and recent fracturing in the lithosphere of the Baikal rift system. Tectonophysics 380 (3–4), 261–272. http://dx.doi.org/10.1016/j.tecto.2003.09.023.
45. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1991. Faulting in the Lithosphere. Shear Zones. Nauka, Siberian Branch, Novosibirsk, 261 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сдвига. Новосибирск: Наука. Сибирское отделение, 1991. 261 с.].
46. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1992. Faulting in the Lithosphere. Tensile Stress Zones. Nauka, Siberian Branch, Novosibirsk, 227 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны растяжения. Новосибирск: Наука. Сибирское отделение, 1992. 227 с.].
47. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Buddo V.Yu., Lobatskaya R.M., Adamovich A.N., Truskov V.A., Babichev A.A., 1994. Faulting in the Lithosphere. Compression Zones. Nauka, Siberian Branch, Novosibirsk, 262 p. (in Russian) [Шерман С.И., Семинский К.Ж., Борняков С.А., Буддо В.Ю., Лобацкая Р.М., Адамович А.Н., Трусков В.А., Бабичев А.А. Разломообразование в литосфере. Зоны сжатия. Новосибирск: Наука. Сибирское отделение, 1994. 262 с.].
48. Sherman S.I., Seminsky K.Zh., Cheremnykh A.V., 2000. Destructive zones and fault-produced block structures of Central Asia. Geology of Pacific Ocean 16, 231–252.
49. Shumilov V., 2009. The origin of the basalt pillars (in Russian) [Шумилов В. Происхождение базальтовых столбов. 2009]. Available from: http://shumilov.kiev.ua/geofizika/proisxozhdenie-bazaltovyx-stolbov.html (last accessed June 22, 2015).
50. Trompert R., Hansen U., 1988. Mantle convection simulations with rheologies that generate platelike behaviour. Nature 395 (6703), 686–689. http://dx.doi.org/10.1038/27185.
51. Trubitsyn V.P., Rykov V.V., 2000. Mantle convection with mobile continents. In: Problems of global geodynamics. GEOS, Moscow, p. 7–28 (in Russian) [Трубицын В.П., Рыков В.В. Мантийная конвекция с плавающими континентами // Проблемы глобальной геодинамики. М.: ГЕОС, 2000. С. 7–28].
52. Trubitsyn V.P., Rykov V.V., 2002. Digital models of the evolution of mantle convection. In: N.L. Dobretsov (Ed.), Global changes of environment. V. 3, Ch. 2, p. 42–56 (in Russian) [Трубицын В.П., Рыков В.В. Численные модели эволюции мантийной конвекции // Глобальные изменения природной среды / Ред. Н.Л. Добрецов. Новосибирск: Наука, 2002. Т. 3, гл. 2. С. 42–56].
53. Trubitsyn V.P., Trubitsyn A.P., 2014. Numerical model for the generation of the ensemble of lithospheric plates and their penetration through the 660-km boundary. Izvestiya, Physics of the Solid Earth 50 (6), 853–864. http://dx.doi.org/10.1134/S106935131406010X.
54. Vrevsky A.B., Glebovitsky V.А., Goncharov А.G., Nikitina L.P., Pushkarev Yu.D., D., 2010. The continental lithospheric mantle beneath Early Precambrian and Late Proterozoic – Phanerozoic structures of the Earth crust: chemical composition, thermal state, evolution. Vestnik ONZ RAN 2, NZ6009, 65–75. (in Russian) [Вревский А.Б., Глебовицкий В.А., Гончаров А.Г., Никитина Л.П., Пушкарев Ю.Д. Континентальная литосферная мантия под разновозрастными структурами земной коры: химический состав, термальное состояние, эволюция // Вестник ОНЗ РАН. 2010. № 2. NZ6009. С. 65–75. http://dx.doi.org/10.2205/2010NZ000027.
55. Yarmolyuk V.V., Kuzmin M.I., 2012. Late Paleozoic and Early Mesozoic rare-metal magmatism of Central Asia: Stages, provinces, and formation settings. Geology of Ore Deposits 54 (5), 313–333. http://dx.doi.org/10.1134/S1075701512050054.
56. Zonenshain L.P., Kuz'min M.I., 1993. Deep geodynamics of the Earth. Geologiya i Geofizika (Russian Geology and Geophysics) 34 (4), 3–13 (in Russian) [Зоненшайн Л.П., Кузьмин М.И. Глубинная геодинамика Земли // Геология и геофизика. 1993. Т. 34. № 4. С. 3–13].
Рецензия
Для цитирования:
Шерман С.И. ГЕНЕТИЧЕСКИЕ ИСТОЧНИКИ И ТЕКТОНОФИЗИЧЕСКИЕ ЗАКОНОМЕРНОСТИ РАЗНОРАНГОВОЙ БЛОКОВОЙ ДЕЛИМОСТИ ЛИТОСФЕРЫ НА РАЗЛИЧНЫХ ЭТАПАХ ЕЕ ФОРМИРОВАНИЯ: ТЕКТОНОФИЗИЧЕСКИЙ АНАЛИЗ. Геодинамика и тектонофизика. 2015;6(3):387-408. https://doi.org/10.5800/GT-2015-6-3-0187
For citation:
Sherman S.I. GENETIC SOURCES AND TECTONOPHYSICAL REGULARITIES OF DIVISIBILITY OF THE LITHOSPHERE INTO BLOCKS OF VARIOUS RANKS AT DIFFERENT STAGES OF ITS FORMATION: TECTONOPHYSICAL ANALYSIS. Geodynamics & Tectonophysics. 2015;6(3):387-408. https://doi.org/10.5800/GT-2015-6-3-0187