Preview

Геодинамика и тектонофизика

Расширенный поиск

ВОЗРАСТ ФИНАЛЬНОЙ КОНСОЛИДАЦИИ СТРУКТУРЫ СИБИРСКОГО КРАТОНА

https://doi.org/10.5800/GT-2023-14-6-0727

Аннотация

Проведены петрографические, геохимические и U-Pb геохронологические исследования катаклазированных гранитоидов юго-восточной части Иркутного блока Шарыжалгайского выступа фундамента Сибирской платформы, который, согласно большинству тектонических схем, является южной частью Тунгусского супертеррейна. По своим геохимическим характеристикам исследованный представительный образец этих гранитоидов соответствует гранодиориту и обнаруживает повышенные содержания Al2O3, Th, Sr, Ba, низкие концентрации K2O, Nb, Y, Yb, сильно фракционированный спектр распределения редкоземельных элементов (Lan/Ybn=284) и отсутствие европиевой аномалии. U-Pb геохронологические исследования циркона из катаклазированного гранодиорита выполнены независимо двумя методами: SIMS и LA-ICP-MS, показавшими хорошую сходимость полученных результатов. U-Pb возраст центральных частей кристаллов циркона, имеющих магматическую зональность, соответствует значениям 2893±19 млн лет (метод SIMS) и 2889±16 млн лет (метод LA-ICP-MS). Эти результаты датирования могут быть проинтерпретированы как возраст архейского протолита гранодиорита. Для краевых оболочек кристаллов циркона, имеющих архейские ядра, и отдельных кристаллов циркона с параллельной зональностью были установлены значения возраста 1855±6 млн лет (метод SIMS) и 1864±5 млн лет (метод LA-ICP-MS), которые фиксируют время преобразований гранодиорита. Оценка возраста около 1.86 млрд лет соответствует основному раннепротерозойскому этапу метаморфизма, мигматизации и сопряженного магматизма, которые широко проявлены в Шарыжалгайском выступе фундамента. Эта оценка возраста совместно с опубликованными ранее значениями возраста метаморфических и синхронных с ними магматических событий в Шарыжалгайском выступе позволила сделать вывод о присоединении Тунгусского супертеррейна к ранее сформированному ядру Сибирского кратона на временном рубеже 1.85–1.88 млрд лет. Финальным этапом становления Сибирского кратона является формирование пород Южно-Сибирского постколлизионного магматического пояса, пересекающего все уже объединенные в единую структуру крупные раннедокембрийские блоки южной части Сибирского кратона.

Об авторах

Т. В. Донская
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



Д. П. Гладкочуб
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



С. А. Сергеев
Всероссийский научно-исследовательский геологический институт им. А.П. Карпинского
Россия

199106, Санкт-Петербург, пр-т Средний, 74



В. Б. Хубанов
Геологический институт им. Н.Л. Добрецова СО РАН
Россия

670047, Улан-Удэ, ул. Сахьяновой, 6а, Республика Бурятия



А. М. Мазукабзов
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



З. Л. Мотова
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



Список литературы

1. Aftalion M., Bibikova E.V., Bowes D.R., Hopgood A.M., Perchuk L.L., 1991. Timing of Early Proterozoic Collisional and Extensional Events in the Granulite-Gneiss-Charnokite-Granite Complex, Lake Baikal, USSR: A U-Pb, Rb-Sr and Sm-Nd Isotopic Study. Journal of Geology 99 (6), 851–861. https://doi.org/10.1086/629556.

2. Barker F., Arth J.G., 1976. Generation of Trondhjemitic-Tonalitic Liquids and Archaean Bimodal Trondhjemite-Basalt Suites. Geology 4 (10), 596–600. https://doi.org/10.1130/0091-7613(1976)4%3C596:GOTLAA%3E2.0.CO;2.

3. Беличенко В.Г., Шмотов А.П., Сезько А.И., Ескин А.С., Васильев Е.П., Резницкий Л.З., Боос Р.Г., Матисон О.Р. Эволюция земной коры в докембрии и палеозое (Саяно-Байкальская горная область). Новосибирск: Наука, 1988. 161 с.

4. Бибикова Е.В., Хильтова В.Я., Грачева Т.В., Макаpов В.А. Возраст зеленокаменных поясов Присаянья // Доклады АН СССР. 1982. Т. 267. № 5. С. 1171–1174

5. Bibikova E.V., Turkina O.M., Kirnozova T.I., Fugzan M.M., 2006. Ancient Plagiogneisses of the Onot Block of the Sharyzhalgai Metamorphic Massif: Isotopic Geochronology. Geochemistry International 44, 310–315. https://doi.org/10.1134/S0016702906030098.

6. Black L.P., Kamo S.L., Allen C.M., Aleinikoff J.N., Davis D.W., Korsch R.J., Foudoulis C., 2003. TEMORA 1: A New Zircon Standard for Phanerozoic U-Pb Geochronology. Chemical Geology 200 (1–2), 155–170. https://doi.org/10.1016/S0009-2541(03)00165-7.

7. Буянтуев М.Д., Хубанов В.Б., Врублевская Т.Т. U‐Pb LA‐ICP‐MS датирование цирконов из субвулканитов бимодальной дайковой серии Западного Забайкалья: методика, свидетельства позднепалеозойского растяжения земной коры // Геодинамика и тектонофизика. 2017. Т. 8. № 2. С. 369‒384. https://doi.org/10.5800/GT-2017-8-2-0246.

8. Condie K.C., 2005. TTGs and Adakites: Are They Both Slab Melts? Lithos 80 (1–4), 33–44. https://doi.org/10.1016/j.lithos.2003.11.001.

9. Didenko A.N., Kozakov I.K., Bibikova E.V., Vodovozov V.Yu., Khil’tova V.Ya., Reznitskii L.S., Ivanov A.V., Levitskii V.I., Travin A.V., Shevchenko D.O., Rasskazov S.V., 2003. Paleoproterozoic Granites of the Sharyzhalgai Block, Siberian Craton: Paleomagnetism and Geodynamic Inferences. Doklady Earth Sciences 390 (4), 510–515.

10. Didenko A.N., Vodovozov V.Yu., Kozakov I.K., Bibikova E.V., 2005. Palaeomagnetic and Geochronological Study of Post-Collisional Early Proterozoic Granitoids in the Southern Siberian Platform: Methodological and Geodynamic Aspects. Izvestiya, Physics of the Solid Earth 41 (2), 156–172.

11. Donskaya T.V., 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic Granitoids. Precambrian Research 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869.

12. Donskaya T.V., Gladkochub D.P., 2021. Post-Collisional Magmatism of 1.88–1.84 Ga in the Southern Siberian Craton: An Overview. Precambrian Research 367, 106447. https://doi.org/10.1016/j.precamres.2021.106447.

13. Donskaya T.V., Gladkochub D.P., Ernst R.E., Pisarevsky S.A., Mazukabzov A.M., Demonterova E.I., 2018. Geochemistry and Petrogenesis of Mesoproterozoic Dykes of the Irkutsk Promontory, Southern Part of the Siberian Craton. Minerals 8 (12), 545. https://doi.org/10.3390/min8120545.

14. Donskaya T.V., Gladkochub D.P., Kovach V.P., Mazukabzov A.M., 2005. Petrogenesis of Early Proterozoic Postcollisional Granitoids in the Southern Siberian Craton. Petrology 13 (3), 229–252.

15. Donskaya T.V., Gladkochub D.P., Mazukabzov A.M., Lepekhina E.N., 2016. Age and Sources of the Paleoproterozoic Premetamorphic Granitoids of the Goloustnaya Block of the Siberian Craton: Geodynamic Applications. Petrology 24, 543–561. https://doi.org/10.1134/S0869591116050040.

16. Donskaya T.V., Sal’nikova E.B., Sklyarov E.V., Gladkochub D.P., Mazukabzov A.M., Kovach V.P., Yakovleva S.Z., Berezhnaya N.G., 2002. Early Proterozoic Postcollision Magmatism at the Southern Flank of the Siberian Craton: New Geochronological Data and Geodynamic Implications. Doklady Earth Sciences 383 (2), 125–128.

17. Ernst R.E., Hamilton M.A., Söderlund U., Hanes J.A., Gladkochub D.P., Okrugin A.V., Kolotilina T., Mekhonoshin A.S. et al., 2016. Long-Lived Connection between Southern Siberia and Northern Laurentia in the Proterozoic. Nature Geoscience 9, 464–469. https://doi.org/10.1038/ngeo2700.

18. Frost B.R., Barnes C.G., Collins W.J., Arculus R.J., Ellis D.J., Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.

19. Gladkochub D.P., Donskaya T.V., Ernst R.E., Hamilton M.A., Mazukabzov A.M., Pisarevsky S.A., Kamo S., 2019. A New Ectasian Event of Basitic Magmatism in the Southern Siberian Craton. Doklady Earth Sciences 486, 507–511. https://doi.org/10.1134/S1028334X19050222.

20. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sal’nikova E.B., Sklyarov E.V., Yakovleva S.Z., 2005. The Age and Geodynamic Interpretation of the Kitoi Granitoid Complex (Southern Siberian Craton). Russian Geology and Geophysics 46 (11), 1121–1133.

21. Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Stanevich A.M., Sklyarov E.V., Ponomarchuk V.A., 2007. Signature of Precambrian Extension Events in the Southern Siberian Craton. Russian Geology and Geophysics 48 (1), 17–31. https://doi.org/10.1016/j.rgg.2006.12.001.

22. Gladkochub D.P., Donskaya T.V., Pisarevsky S.A., Kotov A.B., Salnikova E.B., Mekhonoshin A.S., Sklyarov E.V., Demonterova E.I., Mazukabzov A.M., Stepanova A.V., Konstantinov K.M., 2023. Mesoproterozoic (ca. 1.26 Ga) Srednecheremshansk Mafic-Ultramafic Intrusion in the Southern Siberia: Signature of the Mackenzie Event in Siberia. Precambrian Research 390, 107038. https://doi.org/10.1016/j.precamres.2023.107038.

23. Gladkochub D.P., Donskaya T.V., Reddy S.M., Poller U., Bayanova T.B., Mazukabzov A.M., Dril S., Todt W., Pisarevsky S., 2009. Paleoproterozoic to Eoarchean Crustal Growth in Southern Siberia: a Nd-Isotope Synthesis. In: S.M. Reddy, R. Mazumder, D.A.D. Evans, A.S. Collins (Eds), Palaeoproterozoic Supercontinents and Global Evolution. Geological Society of London Special Publications 323, p. 127–143. https://doi.org/10.1144/SP323.6.

24. Gladkochub D., Pisarevsky S., Donskaya T., Natapov L., Mazukabzov A., Stanevich A., Sklyarov E., 2006. Siberian Craton and Its Evolution in Terms of Rodinia Hypothesis. Episodes 29 (3), 169–174. https://doi.org/10.18814/epiiugs/2006/v29i3/002.

25. Gladkochub D.P., Pisarevsky S.A., Mazukabzov A.M., Söderlund U., Sklyarov E.V., Donskaya T.V., Ernst R.E., Stanevich A.M., 2013. The First Evidence of Paleoproterozoic Late-Collision Basite Magmatism in the Near-Sayan Salient of the Siberian Craton Basement. Doklady Earth Sciences 450, 583–586. https://doi.org/10.1134/S1028334X13060019.

26. Glebovitskii V.A., Levchenkov O.A., Levitskii V.I., Rizvanova N.G., Levskii L.K., Bogomolov E.S., Levitskii I.V., 2011. Age Stages of Metamorphism at the Kitoi Sillimanite Schist Deposit, Southeastern Prisayan’e. Doklady Earth Sciences 436, 13–17. https://doi.org/10.1134/S1028334X11010247.

27. Glebovitsky V.A., Khil’tova V.Ya., Kozakov I.K., 2008. Tectonics of the Siberian Craton: Interpretation of Geological, Geophysical, Geochronological, and Isotopic Geochemical Data. Geotectonics 42, 8–20. https://doi.org/10.1134/S0016852108010020.

28. Грабкин О.В., Мельников А.И. Структура фундамента Сибирской платформы в зоне краевого шва (на примере Шарыжалгайского блока). Новосибирск: Наука, 1980. 95 с.

29. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In: P.J. Sylvester (Ed.), Laser Ablation ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, p. 308–311.

30. Ivanov A.V., Levitskii I.V., Levitskii V.I., Corfu F., Demonterova E.I., Reznitskii L.Z., Pavlova L.A., Kamenetsky V.S., Savatenkov V.M., Powerman V.I., 2019. Shoshonitic Magmatism in the Paleoproterozoic of the South-Western Siberian Craton: An Analogue of the Modern Post-Collision Setting. Lithos 328–329, 88–100. https://doi.org/10.1016/j.lithos.2019.01.015.

31. Jackson S.E., Pearson N.J., Griffin W.L., Belousova E., 2004. The Application of Laser Ablation Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.

32. Khubanov V.B., Buyantuev M.D., Tsygankov A.A., 2016. U-Pb Dating of Zircons from PZ3–MZ Igneous Complexes of Transbaikalia by Sector-Field Mass Spectrometry with Laser Sampling: Technique and Comparison with SHRIMP. Russian Geology and Geophysics 57 (1), 190–205. https://doi.org/10.1016/j.rgg.2016.01.013.

33. Levchenkov O.A., Levitskii V.I., Rizvanova N.G., Kovach V.P., Sergeeva N.A., Levskii L.K., 2012. Age of the Irkut Block of the Prisayan Uplift of the Siberian Platform Basement: Dating Minerals from Metamorphic Rocks. Petrology 20, 86–92. https://doi.org/10.1134/S0869591112010031.

34. Levitskii V.I., Mel’nikov A.I., Reznitskii L.Z., Bibikova E.V., Kirnozova T.I., Kozakov I.K., Makarov V.A., Plotkina Y.V., 2002. Early Proterozoic Postcollisional Granitoids in Southwestern Siberian Craton. Russian Geology and Geophysics 43 (8), 717–731.

35. Levitskii V.I., Reznitskii L.Z., Sal’nikova E.B., Levitskii I.V., Kotov A.B., Barash I.G., Yakovleva S.Z., Anisimova I.V., Plotkina Yu.V., 2010. Age and Origin of the Kitoi Sillimanite Schist Deposit, Eastern Siberia. Doklady Earth Sciences 431, 394–398. http://dx.doi.org/10.1134/S1028334X1003027X.

36. Levitskii V.I., Sal’nikova E.B., Kotov A.B., Reznitskii L.Z., Barash I.G., Yakovleva S.Z., Kovach V.P., Mel’nikov A.I., Plotkina Yu.V., 2004. Age of Formation of Apocarbonate Metasomatites of the Sharyzhalgai Uplift of the Siberian Craton Basement, Southwestern Baikal Region: U-Pb Baddeleyite and Zircon Datings. Doklady Earth Sciences 399 (9), 1204–1208.

37. Ludwig K.R., 1999. User’s Manual for ISOPLOT/EX. Version 2.10. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 1a, 53 p.

38. Ludwig K.R., 2000. SQUID 1.00: A User’s Manual. Berkeley Geochronology Center Special Publication 2, 17 p.

39. Ludwig K.R., 2008. ISOPLOT 3.70. A Geochronological Toolkit for Microsoft Excel. User’s Manual. Berkeley Geochronology Center Special Publication 4, 76 p.

40. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG) and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1−24. https://doi.org/10.1016/j.lithos.2004.04.048.

41. Mekhonoshin A.S., Ernst R., Söderlund U., Hamilton M.A., Kolotilina T.B., Izokh A.E., Polyakov G.V., Tolstykh N.D., 2016. Relationship between Platinum-Bearing Ultramafic-Mafic Intrusions and Large Igneous Provinces (Exemplified by the Siberian Craton). Russian Geology and Geophysics 57 (5), 822–833. https://doi.org/10.1016/j.rgg.2015.09.020.

42. Мельников А.И. Структурная эволюция метаморфических комплексов древних щитов. Новосибирск: Гео, 2011. 288 с.

43. Nozhkin A.D., Turkina O.M., 1993. Geochemistry of Granulites in the Kan and Sharyzhalgay Complexes. United Institute of Geology, Geophysics and Mineralogy SB RAS, Novosibirsk, 223 p. (in Russian) [Ножкин А.Д., Туркина О.М. Геохимия гранулитов канского и шарыжалгайского комплексов. Новосибирск: ОИГГМ РАН, 1993. 223 с.].

44. Nozhkin A.D., Turkina O.M., Mel’gunov M.S., 2001. Geochemistry of the Metavolcanosedimentary and Granitoid Rocks of the Onot Greenstone Belt. Geochemistry International 39 (1), 27–44.

45. Panteeva S.V., Gladkochoub D.P., Donskaya T.V., Markova V.V., Sandimirova G.P., 2003. Determination of 24 Trace Elements in Felsic Rocks by Inductively Coupled Plasma Mass Spectrometry after Lithium Metaborate Fusion. Spectrochimica Acta Part B: Atomic Spectroscopy 58 (2), 341–350. https://doi.org/10.1016/S0584-8547(02)00151-9.

46. Pashkova G.V., Panteeva S.V., Ukhova N.N., Chubarov V.M., Finkelshtein A.L., Ivanov A.V., Asavin A.M., 2019. Major and Trace Elements in Meimechites – Rarely Occurring Volcanic Rocks: Developing Optimal Analytical Strategy. Geochemistry: Exploration, Environment, Analysis 19 (3), 233–243. https://doi.org/10.1144/geochem2017-099.

47. Петрова З.И., Левицкий В.И. Петрология и геохимия гранулитовых комплексов Прибайкалья. Новосибирск: Наука, 1984. 200 с.

48. Pisarevsky S.A., Natapov L.M., Donskaya T.V., Gladkochub D.P., Vernikovsky V.A., 2008. Proterozoic Siberia: A Promontory of Rodinia. Precambrian Research 160 (1–2), 66–76. https://doi.org/10.1016/j.precamres.2007.04.016.

49. Poller U., Gladkochub D.P., Donskaya T.V., Mazukabzov A.M., Sklyarov E.V., Todt W., 2004. Timing of Early Proterozoic Magmatism along the Southern Margin of the Siberian Craton (Kitoy Area). Transactions of the Royal Society of Edinburgh: Earth Sciences 95 (1–2), 215–225. https://doi.org/10.1017/S0263593300001024.

50. Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W., 2005. Multistage Magmatic and Metamorphic Evolution in the Southern Siberian Craton: Archean and Palaeoproterozoic Zircon Ages Revealed by SHRIMP and TIMS. Precambrian Research 136 (3–4), 353–368. https://doi.org/10.1016/j.precamres.2004.12.003.

51. Priyatkina N., Ernst R.E., Khudoley A.K., 2020. A Preliminary Assessment of the Siberian Cratonic Basement with New U-Pb-Hf Detrital Zircon Data. Precambrian Research 340, 105645. https://doi.org/10.1016/j.precamres.2020.105645.

52. Rosen O.M., 2003. The Siberian Craton: Tectonic Zonation and Stages of Evolution. Geotectonics 37 (3), 175–192.

53. Rosen O.M., Condie K.C., Natapov L.M., Nozhkin A.D., 1994. Archean and Early Proterozoic Evolution of the Siberian Craton: A Preliminary Assessment. Archean Crustal Evolution. Developments in Precambrian Geology 11, 411–459. https://doi.org/10.1016/S0166-2635(08)70228-7.

54. Sal’nikova E.B., Kotov A.B., Levitskii V.I., Reznitskii L.Z., Mel’nikov A.I., Kozakov I.K., Kovach V.P., Barash I.G., Yakovleva S.Z., 2007. Age Constraints of High-Temperature Metamorphic Events in Crystalline Complexes of the Irkut Block, the Sharyzhalgai Ledge of the Siberian Platform Basement: Results of the U-Pb Single Zircon Dating. Stratigraphy and Geological Correlation 15, 343–358. https://doi.org/10.1134/S0869593807040016.

55. Savelyeva V.B., Danilova Yu.V., Shumilova T.G., Ivanov A.V., Danilov B.S., Bazarova E.P., 2019. Epigenetic Graphitization in the Basement of the Siberian Craton as Evidence of the Migration of Hydrocarbon-Enriched Fluids in the Paleoproterozoic. Doklady Earth Sciences 486, 498–502. https://doi.org/10.1134/S1028334X19050155.

56. Schuth S., Gornyy V.I., Berndt J., Shevchenko S.S., Sergeev S.A., Karpuzov A.F., Mansfeldt T., 2012. Early Proterozoic U-Pb Zircon Ages from Basement Gneiss at the Solovetsky Archipelago, White Sea, Russia. International Journal Geosciences 3 (2), 289–296. https://doi.org/10.4236/ijg.2012.32030.

57. Sláma J., Košler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – A New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.

58. Smelov A.P., Timofeev V.F., 2007. The Age of the North Asian Cratonic Basement: An Overview. Gondwana Research 12 (3), 279–288. https://doi.org/10.1016/j.gr.2006.10.017.

59. Государственная геологическая карта Российской Федерации. Серия Алдано-Забайкальская. Масштаб 1:1000000. Лист M-48 (Улан-Удэ): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2009. 271 с.

60. Государственная геологическая карта Российской Федерации. Серия Ангаро-Енисейская. Масштаб 1:1000000. Лист N-47 (Нижнеудинск): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2012. 652 с.

61. Sukhorukov V.P., Savel’eva V.B., Jiang Y., Li Z., 2020. P-T Path of Metamorphism and U-Pb Monazite and Zircon Age of the Kitoy Terrane: Implication for Neoarchean Collision in SW Siberian Craton. Geoscience Frontiers 11 (6), 1915–1934. https://doi.org/10.1016/j.gsf.2020.05.012.

62. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19.

63. Turkina O.M., 2010. Formation Stages of the Early Precambrian Crust in the Sharyzhalgai Basement Uplift, Southwestern Siberian Craton: Synthesis of Sm-Nd and U-Pb Data. Petrology 18, 158–176. https://doi.org/10.1134/S0869591110020049.

64. Turkina O.M., 2022. Early Precambrian Crustal Evolution in the Irkut Block (Sharyzhalgai Uplift, Southwestern Siberian Craton): Synthesis of U-Pb, Lu-Hf and Sm-Nd Isotope Data. Russian Geology and Geophysics 63 (2), 137–152. https://doi.org/10.2113/RGG20204255.

65. Turkina O.M., 2023. Variations in Trace Element and Isotope Composition of Neoarchean Mafic Granulites of the Southwest Siberian Craton: A Consequence of Various Mantle Sources or Crustal Contamination. Petrology 31, 204–222. https://doi.org/10.1134/S0869591123020066.

66. Turkina O.M., Berezhnaya N.G., Larionov A.N., Lepekhina E.N., Presnyakov S.L., Saltykova T.E., 2009a. Paleoarchean Tonalite-Trondhjemite Complex in the Northwestern Part of the Sharyzhalgai Uplift (Southwestern Siberian Craton): Results of U-Pb and Sm-Nd Study. Russian Geology and Geophysics 50 (1), 15–28. https://doi.org/10.1016/j.rgg.2008.06.014.

67. Turkina O.M., Berezhnaya N.G., Lepekhina E.N., Kapitonov I.N., 2012. U-Pb (SHRIMP II), Lu-Hf Isotope and Trace Element Geochemistry of Zircons from High-Grade Metamorphic Rocks of the Irkut Terrane, Sharyzhalgay Uplift: Implications for the Neoarchaean Evolution of the Siberian Craton. Gondwana Research 21 (4), 801–817. https://doi.org/10.1016/j.gr.2011.09.012.

68. Turkina O.M., Berezhnaya N.G., Urmantseva L.N., Paderin I.P., Skublov S.G., 2009b. U-Pb Isotope and REE Composition of Zircon from the Pyroxene Crystalline Schists of the Irkut Terrane, Sharyzhalgai Uplift: Evidence for the Neoarchean Magmatic and Metamorphic Events. Doklady Earth Sciences 429, 1505–1510. https://doi.org/10.1134/S1028334X09090207.

69. Turkina O.M., Izokh A.E., 2023. Heterogeneous Subcontinental Lithospheric Mantle below the South Margin of the Siberian Craton: Evidence from Composition of Paleoproterozoic Mafic Associations. Russian Geology and Geophysics 64 (10), 1141–1160. https://doi.org/10.2113/RGG20234575.

70. Turkina O.M., Izokh A.E., Lavrenchuk A.V., Shelepov Ya.Yu., 2022. Composition and Isotope Parameters of Metabasalts and Gabbroids of the Onot Granite-Greenstone Block, Southwestern Siberian Platform, as Indicators of Lithospheric Mantle Evolution from the Archean to Paleoproterozoic. Petrology 30, 499–522. https://doi.org/10.1134/S0869591122040063.

71. Turkina O.M., Kapitonov I.N., 2017. Lu-Hf Isotope Composition of Zircon as an Indicator of the Sources for Paleoproterozoic Collisional Granites (Sharyzhalgai Uplift, Siberian Craton). Russian Geology and Geophysics 58 (2), 149–164. https://doi.org/10.1016/j.rgg.2017.01.001.

72. Turkina O.M., Kapitonov I.N., 2019. The Sources of Paleoproterozoic Collisional Granitoids (Sharyzhalgai Uplift, Southwestern Siberian Craton): from Lithospheric Mantle to Upper Crust. Russian Geology and Geophysics 60 (4), 414–434. https://doi.org/10.15372/RGG2019026.

73. Turkina O.M., Nozhkin A.D., 2008. Oceanic and Riftogenic Metavolcanic Associations of Greenstone Belts in the Northwestern Part of the Sharyzhalgai Uplift, Baikal Region. Petrology 16, 468–491. https://doi.org/10.1134/S0869591108050044.

74. Turkina O.M., Nozhkin A.D., Bayanova T.B., 2006. Sources and Formation Conditions of Early Proterozoic Granitoids from the Southwestern Margin of the Siberian Craton. Petrology 14, 262–283. https://doi.org/10.1134/S0869591106030040.

75. Turkina O.M., Sergeev S.A., Sukhorukov V.P., Rodionov N.V., 2017. U-Pb Age of Zircon from Paragneisses in Granulite Terrane of the Sharyzhalgai Uplift (Southwest of the Siberian Craton): Evidence for the Archean Sedimentation and Evolution of Continental Crust from Eoarchean to Mesoarchean. Russian Geology and Geophysics 58 (9), 1018–1031. https://doi.org/10.1016/j.rgg.2016.07.007.

76. Turkina O.M., Sukhorukov V.P., 2017. Composition and Genesis of Garnet in the Rocks of Paleoproterozoic Gneiss-Migmatite Complex (Sharyzhalgai Uplift, Southwestern Siberian Craton). Russian Geology and Geophysics 58 (6), 674–691. https://doi.org/10.1016/j.rgg.2016.07.004.

77. Turkina O.M., Sukhorukov V.P., 2022. Early Precambrian Granitoid Magmatism of the Kitoy Block and Stages of Collisional Events in the Southwestern Siberian Craton. Russian Geology and Geophysics 63 (5), 620–635. https://doi.org/10.2113/RGG20214385.

78. Turkina O.M., Sukhorukov V.P., Sergeev S.A., 2020. Mesoarchean Bimodal Volcanic Rocks of the Onot Greenstone Belts, Southwestern Siberian Craton: Implications for Magmatism in an Extension/Rift Setting. Precambrian Research 343, 105731. https://doi.org/10.1016/j.precamres.2020.105731.

79. Turkina O.M., Urmantseva L.N., 2009. Metaterrigenous Rocks of the Irkut Granulite-Gneiss Block as Indicators of the Evolution of the Early Precambrian Crust. Lithology and Mineral Resources 44, 43–57. https://doi.org/10.1134/S0024490209010040.

80. Turkina O.M., Urmantseva L.N., Berezhnaya N.G., Presnyakov S.L., 2010. Paleoproterozoic Age of the Protoliths of Metaterrigenous Rocks in the East of the Irkut GranuliteGneiss Block (Sharyzhalgai Salient, Siberian Craton). Stratigraphy and Geological Correlation 18, 16–30. https://doi.org/10.1134/S0869593810010028.

81. Turkina O.M., Urmantseva L.N., Berezhnaya N.G., Skublov S.G., 2011. Formation and Mesoarchean Metamorphism of Hypersthene Gneisses from the Irkut Granulite-Gneiss Block (Sharyzhalgai Uplift in the Southwestern Siberian Craton). Russian Geology and Geophysics 52 (1), 97–108. https://doi.org/10.1016/j.rgg.2010.12.008.

82. Wakita H., Schmitt R.A., Rey P., 1970. Elemental Abundances of Major, Minor, and Trace Elements in Apollo 11 Lunar Rocks, Soil and Core Samples. In: A.A. Levinson (Ed.), Proceedings of the Apollo 11 Lunar Science Conference (January 5–8, 1970). Vol. 2. Pergammon Press, New York, p. 1685–1717.

83. Wiedenbeck M., Allé P., Corfu F., Griffin W.L., Meier M., Oberli F., von Quadt A., Roddick J.C., Spiegel W., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and REE Analyses. Geostandards and Geoanalytical Research 19 (1), 1–23. https://doi.org/10.1111/j.1751-908X.1995.tb00147.x.

84. Williams I.S., 1998. U-Th-Pb Geochronology by Ion Microprobe. In: M.A. McKibben, W.C. Shanks III, W.I. Ridley (Eds), Applications of Microanalytical Techniques to Understanding Mineralizing Processes. Reviews in Economic Geology 7, 1–35. https://doi.org/10.5382/Rev.07.01.


Рецензия

Для цитирования:


Донская Т.В., Гладкочуб Д.П., Сергеев С.А., Хубанов В.Б., Мазукабзов А.М., Мотова З.Л. ВОЗРАСТ ФИНАЛЬНОЙ КОНСОЛИДАЦИИ СТРУКТУРЫ СИБИРСКОГО КРАТОНА. Геодинамика и тектонофизика. 2023;14(6):0727. https://doi.org/10.5800/GT-2023-14-6-0727

For citation:


Donskaya T.V., Gladkochub D.P., Sergeev S.A., Khubanov V.B., Mazukabzov A.M., Motova Z.L. FINAL CONSOLIDATION AGE OF THE SOUTHERN PART OF THE SIBERIAN CRATON. Geodynamics & Tectonophysics. 2023;14(6):0727. (In Russ.) https://doi.org/10.5800/GT-2023-14-6-0727

Просмотров: 500


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)