ГЕОДИНАМИКА ЗОН СОЧЛЕНЕНИЯ СПРЕДИНГОВЫХ ХРЕБТОВ РЕЙКЬЯНЕС И КОЛБЕНСЕЙ С РИФТОВЫМИ ЗОНАМИ ИСЛАНДИИ
https://doi.org/10.5800/GT-2023-14-6-0726
Аннотация
Зоны сочленения спрединговых хребтов Рейкьянес и Колбенсей с рифтами Исландской крупной магматической провинции имеют ряд существенных отличий в структуре от прилегающих спрединговых сегментов, несмотря на схожую кинематику. Трансформная зона Тьёрнес является сложноустроенной и включает в себя ряд вулканических и амагматических структур. Рейкьянесская рифтовая зона, напротив, отличается относительно простым строением при однородном, в целом, характере тектонической и магматической активности. Причины различий в строении трансформных зон и их современная динамика остаются не до конца объясненными. На основе методики анализа морфометрических показателей сбросовых уступов было установлено, что столь значительные различия трансформных зон обусловлены пространственно-временной стабильностью прилегающих к ним структур, в свою очередь контролируемой периодическим увеличением магматической активности Исландского плюма. Развитие рифтогенных структур в пределах трансформных зон находится в прямой связи с их расположением относительно прилегающих спрединговых сегментов и с их магматическим состоянием. Современное развитие обеих трансформных зон связано с нестабильностью и миграцией рифтовых зон Исландии под действием термических импульсов Исландского плюма и, как следствие, кинематической перестройкой самих трансформных зон. Для трансформной зоны Тьёрнес это выражается в постепенном упрощении ее структуры: отмирании западной ветви и прекращении активности блоковых структур. Для Рейкьянесской рифтовой зоны наблюдается постепенное смещение оси в южном направлении, с чем также связывается наличие интенсивного вулканизма в ее пределах.
Об авторах
В. А. БоголюбскийРоссия
119991, Москва, Ленинские горы, 1
Е. П. Дубинин
Россия
119991, Москва, Ленинские горы, 1
Список литературы
1. Bergerat F., Angelier J., 2000. The South Iceland Seismic Zone: Tectonic and Seismotectonic Analyses Revealing the Evolution from Rifting to Transform Motion. Journal of Geodynamics 29 (3–5), 211–231. https://doi.org/10.1016/S0264-3707(99)00046-0.
2. Bergerat F., Angelier J., Verrier S., 1999. Tectonic Stress Regimes, Rift Extension and Transform Motion: The South Iceland Seismic Zone. Geodinamica Acta 12 (5), 303–319. https://doi.org/10.1016/S0985-3111(00)87047-3.
3. Brandsdóttir B., Hooft E.E.E., Mjelde R., Murai Y., 2015. Origin and Evolution of the Kolbeinsey Ridge and Iceland Plateau, N-Atlantic. Geochemistry, Geophysics, Geosystems 16 (3), 612–634. https://doi.org/10.1002/2014GC005540.
4. Clifton A.E., Paglia C., Jónsdóttir J.F., Eythorsdóttir K., Vogfjörð K., 2003. Surface Effects of Triggered Fault Slip on Reykjanes Peninsula, SW Iceland. Tectonophysics 369 (3–4), 145–154. https://doi.org/10.1016/S0040-1951(03)00201-4.
5. DeMets C., Gordon R., Argus D., 2010. Geologically Current Plate Motions. Geophysical Journal International 181 (1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.
6. Einarsson P., 2008. Plate Boundaries, Rifts and Transforms in Iceland. Jökull 58 (1), 35–58. http://doi.org/10.33799/jokull2008.58.035.
7. Einarsson P., Brandsdóttir B., Hjartardóttir Á.R., 2016. The Seismogenic Fracture Systems of the Tjörnes Fracture Zone. In: Workshop on Earthquakes in North Iceland International. Proceedings of a Workshop in Husavik (May 31 – June 3, 2016), p. 11–13.
8. Eksinchol I., Rudge J.F., Maclennan J., 2019. Rate of Melt Ascent beneath Iceland from the Magmatic Response to Deglaciation. Geochemistry, Geophysics, Geosystems 20 (6), 2585–2605. https://doi.org/10.1029/2019GC008222.
9. Escartin J., Cowie P., Searle R., Allerton S., Mitchell N., MacLeod C., Slootweg A., 1999. Quantifying Tectonic Strain and Magmatic Accretion at a Slow-Spreading Ridge Segment, Mid-Atlantic Ridge, 29 °N. Journal of Geophysical Research: Solid Earth 104 (B5), 10421–10437. https://doi.org/10.1029/1998JB900097.
10. Garcia S., Dhont D., 2005. Structural Analysis of the Húsavík-Flatey Transform Fault and Its Relationships with the Rift System in Northern Iceland. Geodinamica Acta 18 (1), 31–41. https://doi.org/10.3166/ga.18.31-41.
11. Grokholsky A.L., Bogoliubskii V.A., Dubinin E.P., 2023. Conditions of the Formation and Evolution of the Tjörnes Transform Zone on the Basis of Physical Modelling, Izvestiya. Physics of the Solid Earth 59 (2), 267–282. https://doi.org/10.1134/S1069351322060040.
12. Gudmundsson A., 1987. Geometry, Formation and Development of Tectonic Fractures on the Reykjanes Peninsula, Southwest Iceland. Tectonophysics 139 (3–4), 295–308. https://doi.org/10.1016/0040-1951(87)90103-X.
13. Haimson B.C., Voight B., 1977. Crustal Stress in Iceland. Pure and Applied Geophysics 115, 153–190. https://doi.org/10.1007/BF01637102.
14. Hilley G.E., DeLong S., Prentice C., Blisniuk K., Arrowsmith J.R., 2010. Morphologic Dating of Fault Scarps Using Airborne Laser Swath Mapping (ALSM) Data. Geophysical Research Letters 37 (4), L04301. https://doi.org/10.1029/2009GL042044.
15. Hjartardóttir Á.R., Einarsson P., 2021. Tectonic Position, Structure, and Holocene Activity of the Hofsjökull Volcanic System, Central Iceland. Journal of Volcanology and Geothermal Research 417, 107277. https://doi.org/10.1016/j.jvolgeores.2021.107277.
16. Howell S., Ito G., Behn M., Martinez F., Olive J.-A., Escartin J., 2016. Magmatic and Tectonic Extension at the Chile Ridge: Evidence for Mantle Controls on Ridge Segmentation. Geochemistry, Geophysics, Geosystems 17 (6), 2354–2373. https://doi.org/10.1002/2016GC006380.
17. Karson J.A., Brandsdóttir B., Einarsson P., Sæmundsson K., Farrell J.A., Horst A.J., 2019. Evolution of Migrating Transform Faults in Anisotropic Oceanic Crust: Examples from Iceland. Canadian Journal of Earth Sciences 56 (12), 1297–1308. https://doi.org/10.1139/cjes-2018-0260.
18. Keiding M., Lund B., Árnadóttir T., 2009. Earthquakes, Stress, and Strain along an Obliquely Divergent Plate Boundary: Reykjanes Peninsula, Southwest Iceland. Journal of Geophysical Research: Solid Earth 114 (B9), B09306. https://doi.org/10.1029/2008JB006253.
19. Khodayar M., Björnsson S., 2018. Structures and Styles of Deformation in Rift, Ridge, Transform Zone, Oblique Rift and a Microplate Offshore/Onshore North Iceland. International Journal of Geosciences 9 (8), 461–511. https://doi.org/10.4236/ijg.2018.98029.
20. Khodayar M., Björnsson S., Guðnason E.Á., Níelsson S., Axelsson G., Hickson C., 2018. Tectonic Control of the Reykjanes Geothermal Field in the Oblique Rift of SW Iceland: From Regional to Reservoir Scales. Open Journal of Geology 8 (3), 333–382. https://doi.org/10.4236/ojg.2018.83021.
21. Khodayar M., Björnsson S., Víkingsson S., Jónsdóttir G.S., 2020. Unstable Rifts, a Leaky Transform Zone and a Microplate: Analogues from South Iceland. Open Journal of Geology 10 (4), 317–367. https://doi.org/10.4236/ojg.2020.104017.
22. Кохан А.В. Морфология рифтовых зон ультрамедленного спрединга (хребты Рейкьянес, Книповича и Гаккеля) // Вестник Московского университета. Серия 5. География. 2013. № 2. С. 61–69.
23. Кохан А.В., Дубинин Е.П. Особенности морфоструктурной сегментации рифтовой зоны Юго-Восточного Индийского хребта в районах мантийных термических аномалий // Вестник Московского университета. Серия 5. География. 2017. № 6. С. 44–54.
24. Кохан А.В., Дубинин Е.П., Грохольский А.Л. Геодинамические особенности структурообразования в спрединговых хребтах Арктики и Полярной Атлантики // Вестник КРАУНЦ. Науки о Земле. 2012. № 1. Вып. 19. С. 59–77.
25. Kolbeinseyjarhryggur and Adjacent Area, Multibeam Measurements. Project of Marine and Freshwater Research Institute in Iceland, 2004. Available from: https://www.hafogvatn.is (Last Accessed October 1, 2021).
26. Kristjánsdóttir S., Guðnason E.Á., Ágústsson K., Ágústsdóttir Th., 2019. Hverahlíð, Hengill Area: Detailed Analysis of Seismic Activity from December 2016 to December 2019. Report, ÍSOR-2019/051. Iceland GeoSurvey, Reykjavík, 54 p.
27. Le Breton L., Cobbold P.R., Dauteil O., Lewis G., 2012. Variations in Amount and Direction of Seafloor Spreading along the Northeast Atlantic Ocean and Resulting Deformation of the Continental Margin of Northwest Europe. Tectonics 31 (5), TC5006. https://doi.org/10.1029/2011TC003087.
28. Lupi M., Geiger S., Graham C.M., 2011. Numerical Simulations of Seismicity-Induced Fluid Flow in the Tjörnes Fracture Zone, Iceland. Journal of Geophysical Research 116 (B7), B07101. https://doi.org/10.1029/2010jb007732.
29. Magnúsdóttir S., Brandsdóttir B., Driscoll N., Detrick R., 2015. Postglacial Tectonic Activity within the Skjálfandadjúp Basin, Tjörnes Fracture Zone, Offshore Northern Iceland, Based on High Resolution Seismic Stratigraphy. Marine Geology 367, 159–170. https://doi.org/10.1016/j.margeo.2015.06.004.
30. Martin E., Paquette J.L., Bosse V., Rufflet G., Tiepolo M., Sigmarsson O., 2011. Geodynamics of Rift–Plume Interaction in Iceland as Constrained by New 40Ar/39Ar and in situ U-Pb Zircon Ages. Earth and Planetary Science Letters 311 (1–2), 28–38. https://doi.org/10.1016/j.epsl.2011.08.036.
31. Martinez F., Hey R., Höskuldsson Á., 2020. Reykjanes Ridge Evolution: Effects of Plate Kinematics, Small-Scale Upper Mantle Convection and a Regional Mantle Gradient. Earth-Science Review 206, 102956. https://doi.org/10.1016/j.earscirev.2019.102956.
32. Metzger S., Jónsson S., Danielsen G., Hreinsdóttir H., Jouanne F., Giardini D., Villemin T., 2013. Present Kinematics of the Tjörnes Fracture Zone, North Iceland, from Campaign and Continuous GPS Measurements. Geophysical Journal International 192 (2), 441–455. https://doi.org/10.1093/gji/ggs032.
33. Mjelde R., Breivik A.J., Raum T., Mittelstaedt E., Ito G., Faleide J.I., 2008. Magmatic and Tectonic Evolution of the North Atlantic. Journal of the Geological Society 165 (1), 31–42. https://doi.org/10.1144/0016-76492007-018.
34. Óladóttir B.A., Larsen G., Guðmundsson M.T., 2021. Catalogue of Icelandic Volcanoes. Available from: http://icelandicvolcanoes.is (Last Accessed October 1, 2021).
35. Parameswaran R.M., Thorbjarnardóttir B.S., Stefánsson R., Bjarnason I.T., 2020. Seismicity on Conjugate Faults in Ölfus, South Iceland: Case Study of the 1998 Hjalli‐Ölfus Earthquake. Journal of Geophysical Research: Solid Earth 125 (8), e2019 JB019203. https://doi.org/10.1029/2019JB019203.
36. Parnell-Turner A.N., White N.J., Maclennan J., Henstock T.J., Murton B. J., Jones S.M., 2013. Crustal Manifestations of a Hot Transient Pulse at 60 °N beneath the Mid-Atlantic Ridge. Earth and Planetary Science Letters 363, 109–120. https://doi.org/10.1016/j.epsl.2012.12.030.
37. Pedersen G.B.M., Belart J.M.C., Óskarsson B.V., Gudmundsson M.T., Gies N., 2022. Volume, Effusion Rate, and Lava Transport during the 2021 Fagradalsfjall Eruption: Results from Near Real-Time Photogrammetric Monitoring. Geophysical Research Letters 49 (13), e2021GL097125. https://doi.org/10.1029/2021GL097125.
38. Pedersen R., Grosse P., Gudmundsson M.T., 2020. Morphometry of Glaciovolcanic Edifices from Iceland: Types and Evolution. Geomorphology 370, 107334. https://doi.org/10.1016/j.geomorph.2020.107334.
39. Pedersen R., Sigmundsson F., Masterlark T., 2009. Rheologic Controls on Inter-Rifting Deformation of the Northern Volcanic Zone, Iceland. Earth and Planetary Science Letters 281 (1–2), 14–26. https://doi.org/10.1016/j.epsl.2009.02.003.
40. Perlt J., Heinert M., 2006. Kinematic Model of the South Icelandic Tectonic System. Geophysical Journal International 164 (1), 168–175. https://doi.org/10.1111/j.1365-246X.2005.02795.x.
41. Porter C., Morin P., Howat I., Noh M.-J., Bates B., Peterman K., Keesey S., Schlenk M. et al., 2018. ArcticDEM. Version 3. https://doi.org/10.7910/DVN/OHHUKH.
42. Radaideh O.M.A., Grasemann B., Melichar R., Mosar J., 2016. Detection and Analysis of Morphotectonic Features Utilizing Satellite Remote Sensing and GIS: An example in SW Jordan. Geomorphology 275, 58–79. https://doi.org/10.1016/J.GEOMORPH.2016.09.033.
43. Rögnvaldsson S.T., Guðmundsson Á., Slunga R., 1998. Seismotectonic Analysis of the Tjörnes Fracture Zone, an Active Transform Fault in North Iceland. Journal of Geophysical Research: Solid Earth 103 (B12), 30117–30129. https://doi.org/10.1029/98JB02789.
44. Ruedas T., Marquart G., Schmeling H., 2007. Iceland: The Current Picture of a Ridge-Centred Mantle Plume. In: J.R.R. Ritter, U.R. Christensen (Ed.), Mantle Plumes – A Multidisciplinary Approach. Springer, Berlin, Heidelberg, p. 71–126. https://doi.org/10.1007/978-3-540-68046-8_3.
45. Sæmundsson K., Sigurgeirsson M.Á., Friðleifsson G.Ó., 2020. Geology and Structure of the Reykjanes Volcanic System, Iceland. Journal of Volcanology and Geothermal Research 391, 106501. https://doi.org/10.1016/j.jvolgeores.2018.11.022.
46. Sæmundsson K., Sigurgeirsson M.Á., Hjartarson Á., Kaldal I., Kristinsson S.G., Víkingsson S., 2016. Geological Map of Southwest Iceland. 1:100000. Second Edition. Reykjavík, Iceland GeoSurvey.
47. Slater L., Jull M., McKenzie D., Gronvöld K., 1998. Deglaciation Effects on Mantle Melting under Iceland: Results from the Northern Volcanic Zone. Earth and Planetary Science Letters 164 (1–2), 151–164. https://doi.org/10.1016/S0012-821X(98)00200-3.
48. Special Protection of Ecological Systems and Geoheritage. 1:50000, 2019. Icelandic Institute of Natural History, Reykjavík.
49. Stefansson R., Gudmundsson G.B., Halldorsson P., 2008. Tjörnes Fracture Zone. New and Old Seismic Evidences for the Link between the North Iceland Rift Zone and the Mid-Atlantic Ridge. Tectonophysics 447 (1–4), 117–126. https://doi.org/10.1016/j.tecto.2006.09.019.
50. Tibaldi A., Bonali F.A., Pasquaré Mariotto F.A., 2016. Interaction between Transform Faults and Rift Systems: A Combined Field and Experimental Approach. Frontiers in Earth Science 4, 33. https://doi.org/10.3389/feart.2016.00033.
51. Wright T.J., Sigmundsson F., Pagli C., Belachew M., Hamling I.J., Brandsdóttir B., Keir D., Pedersen R., Ayele A., Ebinger C., Einarsson P., Lewi E., Calais E., 2012. Geophysical Constraints on the Dynamics of Spreading Centres from Rifting Episodes on Land. Nature Geoscience 5, 242–250. https://doi.org/10.1038/ngeo1428.
52. Yeo I.A., Devey C.W., LeBas T.P., Augustin N., Steinführer A., 2016. Segment-Scale Volcanic Episodicity: Evidence from the North Kolbeinsey Ridge, Atlantic. Earth and Planetary Science Letters 439, 81–87. https://doi.org/10.1016/j.epsl.2016.01.029.
53. Young K.D., Orkan N., Jancin M., Sæmundsson K., Voight B., 2020. Major Tectonic Rotation along an Oceanic Transform Zone, Northern Iceland: Evidence from Field and Paleomagnetic Investigations. Journal of Volcanology and Geothermal Research 391, 106499. https://doi.org/10.1016/j.jvolgeores.2018.11.020.
Рецензия
Для цитирования:
Боголюбский В.А., Дубинин Е.П. ГЕОДИНАМИКА ЗОН СОЧЛЕНЕНИЯ СПРЕДИНГОВЫХ ХРЕБТОВ РЕЙКЬЯНЕС И КОЛБЕНСЕЙ С РИФТОВЫМИ ЗОНАМИ ИСЛАНДИИ. Геодинамика и тектонофизика. 2023;14(6):0726. https://doi.org/10.5800/GT-2023-14-6-0726
For citation:
Bogoliubskii V.A., Dubinin E.P. GEODYNAMICS OF JOINT ZONES OF REYKJANES AND KOLBEINSEY SPREADING RIDGES WITH ICELAND RIFT ZONES. Geodynamics & Tectonophysics. 2023;14(6):0726. (In Russ.) https://doi.org/10.5800/GT-2023-14-6-0726