Preview

Geodynamics & Tectonophysics

Advanced search

LA-ICP-MS ANALYSIS OF TRACE ELEMENTS IN SILICATE MINERALS ON ICP-MS NEXION 300S MASS SPECTROMETER WITH NWR 213 ATTACHMENT FOR LASER ABLATION: METHODOLOGICAL ASPECTS

https://doi.org/10.5800/GT-2022-13-2s-0605

Abstract

Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation (LA) are widely used to study the trace element composition of minerals, including silicates; nevertheless, methodological activities in this area aimed at increasing the sensitivity and locality and reducing composition error, remain relevant. The paper describes methodological approaches for studying the trace element composition of a number of silicate minerals using NexION 300S quadrupole ICP-MS with an NWR 213 LA attachment, obtained on standard synthetic glasses NIST SRM 612 and 610, as well as a number of interlaboratory zircon standards Mud Tank, GJ-1, 91500, Plesovice, Temora-2 and clinopyroxene samples 1636 and 1780 from clinopyroxenite of the Nizhniy Tagil massif (Urals). Presented here are the metrological characteristics of the analysis technique (the accuracy in the determination of elements from Li to U) and variations in sensitivity for different elements, obtained with a crater diameter of 13, 20, 25, 50 and 100 microns. The MS sensitivity drift analysis has been performed through an 8-hour analytical session; a comparison has been made between the results obtained and the literature data; a satisfactory agreement of the results has been observed. The analytical errors allow the use of methods for conducting research in solving various geochemical problems.

About the Authors

M. V. Chervyakovskaya
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Academician Vonsovsky St, Ekaterinburg 620016



V. S. Chervyakovskiy
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Academician Vonsovsky St, Ekaterinburg 620016



S. L. Votyakov
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Academician Vonsovsky St, Ekaterinburg 620016



References

1. Agashev A.M., Chervyakovskaya M.V., Serov I.V., Tolstov A.V., Agasheva E.V., Votyakov S.L., 2020. Source Rejuvenation vs. Re-Heating: Constraints on Siberian Kimberlite Origin from U-Pb and Lu-Hf Isotope Compositions and Geochemistry of Mantle Zircons. Lithos 364–365, 105508. https://doi.org/10.1016/j.lithos.2020.105508.

2. Black L.P., Gulson B.L., 1978. The Age of the Mud Tank Carbonatite, Strangways Range, Northern Territory. Journal of Australian Geology and Geophysics 3, 227–232.

3. Black L.P., Kamo S.L., Allen C.M., Davis D.W., Aleinikoff J.N., Valley J.W., Foudoulis C., 2004. Improved 206Pb/238U Microprobe Geochronology by the Monitoring of a Trace-Element-Related Matrix Effect; SHRIMP, ID-TIMS, ELA-ICP-MS and Oxygen Isotope Documentation for a Series of Zircon Standards. Chemical Geology 205 (1–2), 115–140. https://doi.org/10.1016/j.chemgeo.2004.01.003.

4. Chayka I.F., Sobolev A.V., Izokh A.E., Batanova V.G., Krasheninnikov S.P., Chervyakovskaya M.V., Kontonikas-Charos A., Kutyrev A.V., Lobastov B.M., Chervyakovskiy V.S., 2020. Fingerprints of Kamafugite-Like Magmas in Mesozoic Lamproites of the Aldan Shield: Evidence from Olivine and Olivine-Hosted Inclusion. Minerals 10 (4), 337. https://doi.org/10.3390/min10040337.

5. Gray A.L., 1985. Solid Sample Introduction by Laser Ablation for Inductively Coupled Plasma Source-Mass Spectrometry. Analyst 110, 551–556. https://doi.org/10.1039/AN9851000551.

6. Hager J.W., 1990. Elemental Analysis of Solids Using Laser-Sampling Inductively Coupled Plasma-Mass Spectrometry. In: Optical Spectroscopic Instrumentation and Techniques for the 1990s: Applications in Astronomy, Chemistry, and Physics. Proceedings of the Conference (June 4–6, 1990, Las Cruces, USA). Vol. 1318. SPIE, p. 166–177. https://doi.org/10.1117/12.22110.

7. Jackson S.E., Longerich H.P., Dunning G.R., Dunning G.R., Fryer B.J., 1992. The Application of Laser-Ablation Microprobe – Inductively Coupled Plasma-Mass Spectrometry (LAM-ICP-MS) to in Situ Trace-Element Determinations in Minerals. Canadian Mineralogist 30, 1049–1064.

8. Jackson S.E., Norman J.P., William L.G., Belousova E.A., 2004. The Application of Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry to in Situ U-Pb Zircon Geochronology. Chemical Geology 211 (1–2), 47–69. https://doi.org/10.1016/j.chemgeo.2004.06.017.

9. Liu Y.S., Hu Z.C., Li M., Gao S., 2013. Applications of LAICP-MS in the Elemental Analyses of Geological Samples. Chinese Science Bulletin 58, 3863–3878. https://doi.org/10.1007/s11434-013-5901-4.

10. Norman M.D., Pearson N.J., Sharma A., Griffin W.L., 2007. Quantitative Analysis of Trace Elements in Geological Materials by Laser Ablation ICPMS: Instrumental Operating Conditions and Calibration Values of NIST Glasses. Geostandards and Geoanalytical Research 20 (2), 247–261. https://doi.org/10.1111/j.1751-908X.1996.tb00186.x.

11. Osipova T.A., Kallistov G.A., Zaitseva M.V., 2019. Zircon in High‐Mg Diorite of the Chelyabinsk Massif (South Urals): Morphology, Geochemical Signature, and Petrogenesis Implications. Geodynamics & Tectonophysics 10 (2), 289–308 (in Russian). https://doi.org/10.5800/GT-2019-10-2-0415.

12. Piazolo S., Belousova E., La Fontaine A., Corcoran Ch., Cairney J.M., 2017. Trace Element Homogeneity from Micron- to Atomic Scale: Implication for the Suitability of the Zircon Gj-1 as a Trace Element Reference Material. Chemical Geology 456, 10–18. https://doi.org/10.1016/j.chemgeo.2017.03.001.

13. Shmelev V., Chervyakovskaya M., 2020. Ultramafic Zoned Complexes of the Urals and Siberia: New Geochemical Evidence of Magmatic Origin. Acta Geologica Sinica 94 (S1), 58–59. https://doi.org/10.1111/1755-6724.14466.

14. Slama J., Kosler J., Condon D.J., Crowley J.L., Gerdes A., Hanchar J.M., Horstwood M.S.A., Morris G.A. et al., 2008. Plešovice Zircon – a New Natural Reference Material for U-Pb and Hf Isotopic Microanalysis. Chemical Geology 249 (1–2), 1–35. https://doi.org/10.1016/j.chemgeo.2007.11.005.

15. Van Achterbergh E., Ryan C.G., Griffin W.L., 2001. GLITTER User’s Manual. On-Line Interactive Data Reduction for the LA-ICP-MS Microprobe. Version 4. GEMOC, 72 p.

16. Wiedenbeck M., Hanchar J.M., Peck W.H., Sylvester P., Valley J., Whitehouse M., Kronz A., Morishita Y. et al., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research 28 (1), 9–39. https://doi.org/10.1111/j.1751-908X.2004.tb01041.x.

17. Yamasaki T., Yamashita K., Ogasawara M., Saito G., 2015. Multiple Trace Element Analyses for Silicate Minerals and Glasses by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry (LA-ICP-MS). Bulletin of the Geological Survey of Japan 66 (9/10), 179–197.


Review

For citations:


Chervyakovskaya M.V., Chervyakovskiy V.S., Votyakov S.L. LA-ICP-MS ANALYSIS OF TRACE ELEMENTS IN SILICATE MINERALS ON ICP-MS NEXION 300S MASS SPECTROMETER WITH NWR 213 ATTACHMENT FOR LASER ABLATION: METHODOLOGICAL ASPECTS. Geodynamics & Tectonophysics. 2022;13(2):0605. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0605

Views: 716


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)