IN SITU TEMPERATURE-DEPENDENT RAMAN SPECTROSCOPY AND LATTICE DYNAMICS OF SCHEELITE AND SCHEELITE-LIKE COMPOUNDS
https://doi.org/10.5800/GT-2022-13-2s-0609
Abstract
Here we present the results from an in situ Raman thermal spectroscopy study on specific features of the lattice dynamics of scheelite-type compounds (natural and synthetic scheelite, synthetic CaMoO4 and SrMoO4) in the temperature range of 83–873 K. Spectroscopic data processing has been carried out based on both classical "peak fitting" and statistical approaches. It has been suggested that an increase in temperature causes nonuniformity of MoO4 and WO4 tetrahedra transformation. It has been assumed that dynamics in thermal expansion of unit cells of Ca-containing compounds is slower than that in thermal expansion of WO4 (MoO4) polyhedral. This diffence is mainly due to the fact that thermal expansion is mainly defined by the expansion of CaO8 (SrO8) polyhedra.
About the Authors
E. A. PankrushinaRussian Federation
Elizaveta A. Pankrushina
15 Academician Vonsovsky St, Ekaterinburg 620016
Z. A. Mikhaylovskaya
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016
Yu. V. Shchapova
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016
S. L. Votyakov
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016
References
1. Dove M.T., 1997. Theory of Displacive Phase Transitions in Minerals. American Mineralogist 82 (3–4), 213–244. https://doi.org/10.2138/am-1997-3-401.
2. Guo H.H., Zhou D., Pang L.X., Qi Z.M., 2019. Microwave Dielectric Properties of Low Firing Temperature Stable Scheelite Structured (CA,Bi)(MO,V)О4 Solid Solution Ceramics for LTCC Applications. Journal of the European Ceramic Society 39 (7), 2365–2373. https://doi.org/10.1016/j.jeurceramsoc.2019.02.010.
3. Kobuzov A.S., Pankrushina E.A., Shchapova Yu.V., Votyakov S.L., 2021a. A Program to Calculate Asymmetry and Excess as Characteristics of Stereoscopic Data. Software Registration Certificate № RU 2021668021 of November 09, 2021. ROSPATENT (in Russian)
4. Kobuzov A.S., Pankrushina E.A., Shchapova Yu.V., Votyakov S.L., 2021b. A Program to Calculate Autocorrelation Function as a Characteristic of Spectroscopic Data. Software Registration Certificate № RU 2021667714 of November 02, 2021. ROSPATENT (in Russian)
5. Mikhaylovskaya Z.A., Abrahams I., Petrova S.A., Buyanova E.S., Tarakina N.V., Piankova D.V., Morozova M.V., 2020. Structural, Photocatalytic and Electroconductive Properties of Bismuth-Substituted CaMоO4. Journal of Solid State Chemistry 291, 121627. https://doi.org/10.1016/j.jssc.2020.121627.
6. Nasdala L., Smith D.C., Kaindl R., Ziemann M.A., 2004. Raman Spectroscopy: Analytical Perspectives in Mineralogical Research. In: A. Beran, E. Libowitzky (Eds), Spectroscopic Methods in Mineralogy. EMU Notes in Mineralogy. Vol. 6. Eötvös University Press, Budapest, p. 281–343. https://doi.org/10.1180/EMU-notes.6.7.
7. Pankrushina E.A., Kobuzov A.S., Shchapova Y.V., Votyakov S.L., 2020. Analysis of Temperature-Dependent Raman Spectra of Minerals: Statistical Approaches. Journal of Raman Spectroscopy 51 (9), 1549–1562. https://doi.org/10.1002/jrs.5825.
8. Porto S., Scott J., 1967. Raman Spectra of CaWO4, SrWO4, CaMoO4, and SrMoO4. Physical Review 157, 716–719. https://doi.org/10.1103/PHYSREV.157.716.
9. Salje E.K., Carpenter M.A., Malcherek T., Ballaran T.B., 2000. Autocorrelation Analysis of Infrared Spectra from Minerals. European Journal of Mineralogy 12 (3), 503–519. https://doi.org/10.1127/0935-1221/2000/0012-0503.
10. Sarantopoulou E., Raptis C., Ves S., Christofilos D., Kourouklis G.A., 2002. Temperature and Pressure Dependence of Raman-Active Phonons of CaMoO4: an Anharmonicity Study. Journal of Physics: Condensed Matter 14 (39), 8925.
11. Senyshyn A., Kraus H., Mikhailik V.B., Yakovyna V., 2004. Lattice Dynamics and Thermal Properties of CaWO4. Physical Review B 70 (21), 214306. https://doi.org/10.1103/PhysRevB.70.214306.
12. Suda J., Chiba H., Sato T., 1998. Temperature Dependence of the Ag+Bg-Mode of Raman Shift for CaWO4 Crystal. Journal of the Physical Society of Japan 67 (1), 20–22. https://doi.org/10.1143/JPSJ.67.20.
13. Suda J., Zverev P.G., 2019. Temperature Dependence of Raman Frequency Shift in SrWO4 Crystal Studied by Lattice Dynamical Calculations. Crystals 9 (4), 197. https://doi.org/10.3390/cryst9040197.
14. Wyckoff R.W.G., 1965. Crystal Structures. Vol. 3. Interscience Publishers, New York, London, Sydney, 981 p.
15. Yu H., Shi X., Huang L., Kang X., Pan D., 2020. Solution-Deposited and Low Temperature-Annealed Eu3+/Tb3+-Doped CaMoO4/SrMoO4 Luminescent Thin Films. Journal of Luminescence 225, 117371. https://doi.org/10.1016/j.jlumin.2020.117371.
Review
For citations:
Pankrushina E.A., Mikhaylovskaya Z.A., Shchapova Yu.V., Votyakov S.L. IN SITU TEMPERATURE-DEPENDENT RAMAN SPECTROSCOPY AND LATTICE DYNAMICS OF SCHEELITE AND SCHEELITE-LIKE COMPOUNDS. Geodynamics & Tectonophysics. 2022;13(2):0609. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0609