Preview

Geodynamics & Tectonophysics

Advanced search

THE METHOD FOR Cu AND Zn ISOTOPE RATIO DETERMINATION BY MC ICP-MS USING THE AG MP-1 RESIN

https://doi.org/10.5800/GT-2022-13-2s-0615

Abstract

The isotopic composition of copper is of great interest for researchers in various fields of science, geochemistry and hydrology in particular, wherein the consideration is being given to the variations in the isotopic composition of the Earth’s crust, extraterrestrial matter, and water basins, as well as to the origin and transfer of matter. Zn isotopes appear to be promising for identifying the sources and pathways of the environmental pollution. The aim of this study involves the refinement and validation of the zinc and copper isotopic ratio determination methodology covering the whole process from sample digestion to MC ICP-MS measurements. For this reason, as well as to assess the suitability of the methodology for the analysis of environmental samples, Zn and Cu isotopic analysis of the BHVO-2, BCR-2 and AGV-2 USGS certified reference materials has been performed. The method for determination of Cu and Zn stable isotope ratios by multi-collector inductively coupled plasma mass spectrometry in environmental samples is developed. The application of the AG MP-1 resin with optimized layer parameters (resin bed height 3.5 cm, diameter 1 cm) provides the high-purity Cu and Zn fractions. The method is characterized by high throughput and adequate analytical figures of merit when using the standard-sample bracketing technique for mass bias correction. The procedural blanks related to chemical dissolution and ion exchange procedures are lower than 1 and 3 ng for Cu and Zn, respectively, assuring no blank effect on the isotopic composition of samples. The accuracy and precision obtained for Cu and Zn isotope measurements in the BHVO-2, BCR-2 and AGV-2 geological certified reference materials demonstrate good agreement with the reference values published.

About the Authors

T. G. Okuneva
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences; Institute of Industrial Ecology, Ural Branch of the Russian Academy of Sciences
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016
20a Sof'ya Kovalevskaya St, Ekaterinburg, 620219


S. V. Karpova
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016


M. V. Streletskaya
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016


N. G. Soloshenko
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016


D. V. Kiseleva
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences; Ural Federal University
Russian Federation
15 Academician Vonsovsky St, Ekaterinburg 620016
19 Mira St, Ekaterinburg, 620002


References

1. Borrok D., Wanty R.B., Ridley W.I., Wolf R., Lamothe P.J., Adams M., 2007. Separation of Copper, Iron, and Zinc from Complex Aqueous Solutions for Isotopic Measurement. Chemical Geology 242 (3–4), 400–414. https://doi.org/10.1016/j.chemgeo.2007.04.004.

2. Dirks C., Scholten B., Happel S., Zulauf A., Bombard A., Jungclas H., 2010. Characterisation of a Cu Selective Resin and Its Application to the Production of 64Cu. Journal of Radioanalytical and Nuclear Chemistry 28, 671–674. https://doi.org/10.1007/s10967-010-0744-9.

3. Grebenshchikova V.I., Efimova N.V., Doroshkov A.A., 2017. Chemical Composition of Snow and Soil in Svirsk City (Irkutsk Region, Pribaikal’e). Environmental Earth Sciences 76, 712. https://doi.org/10.1007/s12665-017-7056-0.

4. Gustaytis M.A., Myagkaya I.N., Chumbaev A.S., 2018. Hg in Snow Cover and Snowmelt Waters in High-Sulfide Tailing Regions (Ursk Tailing Dump Site, Kemerovo Region, Russia). Chemosphere 202, 446–459. https://doi.org/10.1016/j.chemosphere.2018.03.076.

5. Maréchal C., Albarède F., 2002. Ion-Exchange Fractionation of Copper and Zinc Isotopes. Geochimica et Cosmochimica Acta 66 (9), 1499–1509. https://doi.org/10.1016/S0016-7037(01)00815-8.

6. Maréchal C., Télouk P., Albarède F., 1999. Precise Analysis of Copper and Zinc Isotopic Compositions by Plasma-Source Mass Spectrometry. Chemical Geology 156 (1–4), 251–273. https://doi.org/10.1016/S0009-2541(98)00191-0.

7. Mathur R., Ruiz J., Titley S., Liermann L., Buss H., Brantley S., 2005. Cu Isotopic Fractionation in the Supergene Environment with and without Bacteria. Geochimica et Cosmochimica Acta 69 (22), 5233–5246. https://doi.org/10.1016/j.gca.2005.06.022.

8. Melaku S., Morris V., Raghavan D., Hosten C., 2008. Seasonal Variation of Heavy Metals in Ambient Air and Precipitation at a Single Site in Washington DC. Environmental Pollution 155 (1), 88–98. https://doi.org/10.1016/j.envpol.2007.10.038.

9. Moynier F., Vance D., Fujii T., Savage P., 2017. The Isotope Geochemistry of Zinc and Copper. Reviews in Mineralogy and Geochemistry 82 (1), 543–600. https://doi.org/10.2138/rmg.2017.82.13.

10. Novák M., Šípková A., Chrastný V., Štěpánová M., Voldřichová P., Veselovský F., Přechová E., Čuřík J. et al., 2016. Cu-Zn Isotope Constraints on the Provenance of Air Pollution in Central Europe: Using Soluble and Insoluble Particles in Snow and Rime. Environmental Pollution 218, 1135–1146. https://doi.org/10.1016/j.envpol.2016.08.067.

11. Streletskaya M.V., Chervyakovskaya M.V., Okuneva T.G., Kiseleva D.V., 2020. BHVO-2, AGV-2 and BCR-2 Certified Reference Materials in the Method Validation for Zinc Stable Isotope Analysis of Environmental Samples. In: S. Votyakov, D. Kiseleva, V. Grokhovsky, Y. Shchapova (Eds), Minerals: Structure, Properties, Methods of Investigation. Springer, Cham, p. 251–258. https://doi.org/10.1007/978-3-030-49468-1_32.

12. Vanhaecke F., Balcaen L., Malinovsky D., 2009. Use of Single-Collector and Multi-Collector ICP-Mass Spectrometry for Isotopic Analysis. Journal of Analytical Atomic Spectrometry 24 (7), 863–886. https://doi.org/10.1039/B903887F.

13. Vasic M.V., Mihailovic A., Kozmidis-Luburic U., Nemes T., Ninkov J., Zeremski-Skoric T., Antic B., 2012. Metal Contamination of Short-Term Snow Cover near Urban Crossroads: Correlation Analysis of Metal Content and Fine Particles Distribution. Chemosphere 865 (6), 585–592. https://doi.org/10.1016/j.chemosphere.2011.10.023.

14. Voldřichová P., Chrastný V., Šípková A., Farkaš J., Novák M., Štěpánová M., Krachler M., Veselovský F. et al., 2014. Zinc Isotope Systematics in Snow and Ice Accretions in Central European Mountains. Chemical Geology 388, 130–141. https://doi.org/10.1016/j.chemgeo.2014.09.008.


Review

For citations:


Okuneva T.G., Karpova S.V., Streletskaya M.V., Soloshenko N.G., Kiseleva D.V. THE METHOD FOR Cu AND Zn ISOTOPE RATIO DETERMINATION BY MC ICP-MS USING THE AG MP-1 RESIN. Geodynamics & Tectonophysics. 2022;13(2):0615. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0615

Views: 623


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)