IDENTIFICATION OF GEOCHEMICAL MARKERS OF VOLCANISM BY THE CLUSTER ANALYSIS FOR THE BOTTOM SEDIMENTS OF THE THERMAL LAKE FUMAROLNОЕ ACCORDING TO SR-XRF
https://doi.org/10.5800/GT-2022-13-2s-0608
Abstract
We carried out layer-by-layer scanning (with a step of 1 mm) of the bottom sediments of the thermal lake Fumarolnое with SR-XRF (X-ray fluorescence analysis using synchrotron radiation). The lake is located in the caldera of the Uzon volcano (Kamchatka). The section of the bottom sediments of lake IV Fumarolnое covering the time interval from 260 AD to 2012 is diverse in chemical and mineral composition. Two pyroclastic horizons are observed. The chemical composition of the bottom sediments showed the presence of different layers in which such chemical elements as: Ca, Sr, As, Sb, Mo. Cluster analysis performed for chemical elements revealed the boundaries of layers with different geochemical characteristics. The boundaries of these layers coincide with the horizons identified by mineralogical analysis. At the same time, statistical methods of geochemical data processing allowed unambiguously identifying pyroclastic horizons by elemental composition. We show that the data of SR-XRF analysis in conjunction with cluster analysis can be used to separate the gravity core into layers. The data are in good agreement with the separation data into layers using mineralogical methods.
About the Authors
I. S. KirichenkoRussian Federation
Ivan S. Kirichenko
3 Academician Koptyug Ave, Novosibirsk 630090E. V. Lazareva
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
S. M. Zhmodik
Russian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
References
1. Badrudin M., 1994. Kelut Volcano Monitoring: Hazards, Mitigation, Changes in Water Chemistry Prior to the 1990 Eruption. Geochemical Journal 28 (3), 233–241. https://doi.org/10.2343/geochemj.28.233.
2. Braitseva O.A., Florensky I.V., Ponomareva V.V., Litasova S.N., 1985. History of the Activity of Kikhpinych Volcano in the Holocene. Volcanology and Seismology 6, 3–19 (in Russian)
3. Brown T.J., Peart J.A., 1973. Protozoa from Blue Lake, Raoul Island (Note). New Zealand Journal of Marine and Freshwater Research 7 (1–2), 171–178. https://doi.org/10.1080/00288330.1973.9515464.
4. Bychkov A.Yu., 2009. Geochemical Model of Modern Ore Formation in the Uzon Caldera (Kamchatka). GEOS, Moscow, 124 p. (in Russia)
5. Caudron C., Ohba T., Capaccioni B., 2017. Geochemistry and Geophysics of Active Volcanic Lakes: an Introduction. Geological Society of London Special Publications 437, 1–8. https://doi.org/10.1144/SP437.18.
6. Christenson B., Németh K., Rouwet D., TassiJean F., Vandemeulebrouck J., Varekamp J.C., 2015. Volcanic Lakes. In: D. Rouwet, B. Christenson, F. Tassi, J. Vandemeulebrouck (Eds), Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg, p. 1–20. https://doi.org/10.1007/978-3-642-36833-2_1.
7. Christenson B.W., Wood C.P., 1993. Evolution of a Vent-Hosted Hydrothermal System beneath Ruapehu Crater Lake, New Zealand. Bulletin of Volcanology 55, 547–565. https://doi.org/10.1007/BF00301808.
8. Dar’in A.V., Zolotarev K.V., Kalugin I.A., Maksimova N.V., 2003. Application of the XRF-SR Method to Determine the Microelement Composition of the Bottom Sediments of the Lake. Khubsugul (Mongolia). Search for Geochemical Indicators of Sedimentation and Paleoclimate Variations in the Baikal Rift Zone. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 12, 45–48 (in Russian)
9. Delmelle P., Bernard A., 1994. Geochemistry, Mineralogy and Chemical Modeling of the Acid Crater Lake of Kawah Ijen Volcano, Indonesia. Geochimica et Cosmochimica Acta 58 (11), 2445–2460. https://doi.org/10.1016/0016-7037(94)90023-X.
10. Giggenbach W.F., 1976. Geothermal Ice Caves on Mt Erebus, Ross Island, Antarctica. New Zealand Journal of Geology and Geophysics 19 (3), 365–372. https://doi.org/10.1080/00288306.1976.10423566.
11. Giggenbach W.F., Glover R.B., 1975. The Use of Chemical Indicators in the Surveillance of Volcanic Activity Affecting the Crater Lake on Mt Ruapehu, New Zealand. Bulletin Volcanologique 39, 70–81. https://doi.org/10.1007/BF02596947.
12. Giggenbach W.F., Gonfiantini R., Jangi B.L., Truesdell A.H., 1983. Isotopic and Chemical Composition of Parbati Valley Geothermal Discharges, North-West Himalaya, India. Geothermics 12 (2–3), 199–222. https://doi.org/10.1016/0375-6505(83)90030-5.
13. Grindley G.W., Harris W.F., Steiner A., 1965. The Geology, Structure, and Exploitation of the Wairakei Geothermal Field, Taupo, New Zealand. Bulletin. Vol. 75. New Zealand Geological Survey, Wellington, New Zealand, 130 p.
14. Karpov G.A., Pavlov A.L., 1976. Uzon Geyser Hydrothermal Ore-Forming System of Kamchatka. Physico-Chemical Sketch. Proceedings of the Institute of Geology and Geophysics of the USSR Academy of Sciences. Vol. 317. Nauka, Novosibirsk, 86 p. (in Russian)
15. Kirichenko I.S., Lazareva E.V., Zhmodik S.M., Dobrezov N.L., Belyanin D.K., Miroshnichenko L.V., 2019. Modern Mineral Formation in the Thermal Lake Fumarolnoe (Uzon Caldera, Kamchatka) as a Key to Paleoreconstruction. Geology of Ore Deposits 61, 747–755. https://doi.org/10.1134/S1075701519080063.
16. Marchetto A., Ariztegui D., Brauer A., Lami A., Mercuri A.-M., Sadori L., Vigliotti L., Wulf S., Guilizzoni P., 2015. Volcanic Lake Sediments as Sensitive Archives of Climate and Environmental Change. In: D. Rouwet, B. Christenson, F. Tassi, J. Vandemeulebrouck (Eds), Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg, p. 379–399. https://doi.org/10.1007/978-3-642-36833-2_17.
17. Martín-Puertas C., Valero-Garcés B.L., Brauer A., Mata M.P., Delgado-Huertas A., Dulski P., 2009. The Iberian–Roman Humid Period (2600–1600 cal yr BP) in the Zoñar Lake Varve Record (Andalucía, Southern Spain). Quaternary Research 71 (2), 108–120. https://doi.org/10.1016/j.yqres.2008.10.004.
18. Mastin L.G., Witter J.B., 2000. The Hazards of Eruptions through Lakes and Seawater. Journal of Volcanology and Geothermal Research 97 (1–4), 195–214. https://doi.org/10.1016/S0377-0273(99)00174-2.
19. Mercedes-Martín R., Ayora C., Tritlla J., Sánchez-Román M., 2019. The Hydrochemical Evolution of Alkaline Volcanic Lakes: A Model to Underst, the South Atlantic Pre-salt Mineral Assemblages. Earth-Science Reviews 198, 102938. https://doi.org/10.1016/j.earscirev.2019.102938.
20. Mercedes-Martín R., Brasier A.T., Rogerson M., Reijmer J.J., Vonhof H., Pedley M., 2017. A Depositional Model for Spherulitic Carbonates Associated with Alkaline, Volcanic Lakes. Marine and Petroleum Geology 86, 168–191. https://doi.org/10.1016/j.marpetgeo.2017.05.032.
21. Naboko S.I. (Ed.), 1974. Volcanism, Hydrothermal Process and Ore Formation. Nedra, Moscow, 264 p. (in Russian)
22. Nesbitt H.W., Young G.M., 1984. Prediction of Some Weathering Trends of Plutonic and Volcanic Rocks Based on Thermodynamic and Kinetic Considerations. Geochimica et Cosmochimica Acta 48 (7), 1523–1534. https://doi.org/10.1016/0016-7037(84)90408-3.
23. Peti L., Gadd P.S., Hopkins J.L., Augustinus P.C., 2020. Itrax μ‐XRF Core Scanning for Rapid Tephrostratigraphic Analysis: A Case Study from the Auckl, Volcanic Field Maar Lakes. Journal of Quaternary Science 35 (1–2), 54–65. https://doi.org/10.1002/jqs.3133.
24. Phedorin M.A., Goldberg E.L., 2005. Prediction of Absolute Concentrations of Elements from SR XRF Scan Measurements of Natural Wet Sediments. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 543 (1), 274–279. https://doi.org/10.1016/j.nima.2005.01.240.
25. Piminov P.A., Baranov G.N., Bogomyagkov A.V., Berkaev D.E., Borin V.M., Dorokhov V.L., Karnaev S.E., Kiselev V.A. et al., 2016. Synchrotron Radiation Research and Application at VEPP-4. Physics Procedia 84, 19–26. https://doi.org/10.1016/j.phpro.2016.11.005.
26. Shinohara H., Yoshikawa S., Miyabuchi Y., 2015. Degassing Activity of a Volcanic Crater Lake: Volcanic Plume Measurements at the Yudamari Crater Lake, Aso Volcano, Japan. In: D. Rouwet, B. Christenson, F. Tassi, J. Vandemeulebrouck (Eds), Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg, p. 201–217. https://doi.org/10.1007/978-3-642-36833-2_8.
27. Varekamp J.C., 2015. The Chemical Composition and Evolution of Volcanic Lakes. In: D. Rouwet, B. Christenson, F. Tassi, J. Vandemeulebrouck (Eds), Volcanic Lakes. Advances in Volcanology. Springer, Berlin, Heidelberg, p. 93–123. https://doi.org/10.1007/978-3-642-36833-2_4.
Review
For citations:
Kirichenko I.S., Lazareva E.V., Zhmodik S.M. IDENTIFICATION OF GEOCHEMICAL MARKERS OF VOLCANISM BY THE CLUSTER ANALYSIS FOR THE BOTTOM SEDIMENTS OF THE THERMAL LAKE FUMAROLNОЕ ACCORDING TO SR-XRF. Geodynamics & Tectonophysics. 2022;13(2):0608. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0608