Preview

Geodynamics & Tectonophysics

Advanced search

COSEISMIC EFFECTS OF THE 11 JANUARY 2021 HOVSGOL, MONGOLIA, EARTHQUAKE

https://doi.org/10.5800/GT-2022-13-2s-0626

Abstract

The research provides an example of the GPS time series processing for monitoring of horizontal coseismic displacements during the 11 January 2021 M 6.7 Hovsgol earthquake, Mongolia. There has been developed a methodological approach to the study of coseismic displacements at the time of the earthquake. This paper presents the results of determining the values of horizontal coseismic displacements which are 0.6 mm in the junction zone between the Hovsgol and Tunka depressions and hundredths of a millimeter for the Siberian block and Transbaikalia areas. For stations located on the southern margin of the Siberian block and stations in Transbaikalia, the vectors of coseismic displacements are directed to the west. The calculated displacement vectors of the stations near the epicenter (MNDY and BADG) are directed to the southeast. 

About the Authors

A. V. Lukhnev
Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



O. F. Lukhneva
Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



V. A. Sankov
Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



A. I. Miroshnichenko
Institute of the Earth's Crust, Siberian Branch of the Russian Academy of Sciences
Russian Federation

128 Lermontov St, Irkutsk 664033



References

1. Afraimovich E.L., Palamartchouk K.S., Perevalova N.P., Chernukhov V.V., Lukhnev A.V., Zalutsky V.T., 1998. Ionospheric Effects of the Solar Eclipse of March 9, 1997, as Deduced from GPS Data. Geophysical Research Letters 25 (4), 465–468. https://doi.org/10.1029/98gl00186.

2. Altamimi Z., Rebischung P., Métivier L., Xavier C., 2016. ITRF2014: A New Release of the International Terrestrial Reference Frame Modeling Nonlinear Station Motions. Journal of Geophysical Research: Solid Earth 121 (8), 6109–6131. https://doi.org/10.1002/2016JB013098.

3. Bock Y., Melgar D., Crowell B.W., 2011. Real-Time Strong-Motion Broadband Displacements from Collocated GPS and Accelerometers. Bulletin of the Seismological Society of America 101 (6), 2904–2925. https://doi.org/10.1785/0120110007.

4. Calais E., Freed A., Mattioli G., Amelung F., Jónsson S., Jansma P., Hong S.-H., Dixon T., Prépetit C., Momplaisir R., 2010. Transpressional Rupture of an Unmapped Fault during the 2010 Haiti Earthquake. Nature Geoscience 3, 794–799. https://doi.org/10.1038/NGEO992.

5. Calais E., Lesne O., Devercheere J., Sankov V., Lukhnev A., Miroshnitchenko A., Buddo V., Levi K., Zalutzky V., Bashkuev Y., 1998. Crustal Deformation in the Baikal Rift from GPS Measurements. Geophysical Research Letters 25 (21), 4003–4006. https://doi.org/10.1029/1998GL900067.

6. Calais E., Vergnolle M., Sankov V., Lukhnev A., Miroshnichenko A., Amarjargal S., Deverchere J., 2003. GPS Measurements of Crustal Deformation in the Baikal-Mongolia Area (1994–2002): Implications on Current Kinematics of Asia. Journal of Geophysical Research: Solid Earth 108 (В10), 2501. https://doi.org/10.1029/2002JB002373.

7. CDDIS, 2021. Nasa’s Archive of Space Geodesy Data. Available from: http://cddis.gsfc.nasa.gov (Last Accessed December 7, 2021).

8. Cervelli P.F., Fournier T., Freymueller J., Power J.A., 2006. Ground Deformation Associated with the Precursory Unrest and Early Phases of the January 2006 Eruption of Augustine Volcano, Alaska. Geophysical Research Letters 33 (18). https://doi.org/10.1029/2006GL027219.

9. Dembelov M.G., Bashkuev Yu.B., Loukhnev A.V., Loukhneva O.F., Sankov V.A., 2017. Determination of Humidity of the Troposphere by GNSS Signals. In: G.G. Matvienko, O.A. Romanovskii, Proceedings of the 23rd International Symposium on Atmospheric and Ocean Optics: Atmospheric Physics (July 3–7, 2017). Vol. 10466. SPIE, 104666N. https://doi.org/10.1117/12.2288151.

10. Dembelov M.G., Bashkuev Y.B., Lukhnev A.V., Lukhneva O.F., Sankov V.A., 2015. Diagnostics of Atmospheric Water Vapor Content According to GPS Measurements. Atmospheric and Oceanic Optics 28, 291–296. https://doi.org/10.1134/S1024856015040053.

11. Dembelov M.G., Lukhneva O.F., Lukhnev A.V., 2018. Determination of Tropospheric Refraction over Observation Points IRKM (Irkutsk), ULAZ (Ulan-Ude) and BADG (Badary). Geodynamics & Tectonophysics 9 (4), 1205–1215 (in Russian) https://doi.org/10.5800/GT-2018-9-4-0391.

12. DeMets C., Mattioli G., Jansma P., Rogers R., Tenorio C., Turner L.H., 2007. Present Motion and Deformation of the Caribbean Plate: Constraints from New GPS Geodetic Measurements from Honduras and Nicaragua. In: P. Mann (Ed.), Geologic and Tectonic Development of the Caribbean Plate Boundary in Northern Central America. Vol. 428. Geological Society of America Special Papers, p. 21–36. https://doi.org/10.1130/2007.2428(02).

13. Dong D., Herring T.A., King R.W., 1998. Estimating Regional Deformation from a Combination of Space and Terrestrial Geodetic Data. Journal of Geodesy 72 (4), 200–214. https://doi.org/10.1007/s001900050161.

14. Dzhurik V.I., Dudarmaa T. (Eds), 2004. Complex Geophysical and Seismological Investigations in Mongolia. RCAG MAN, Ulaanbaatar–Irkutsk, 314 p.

15. Gili J.A., Corominas J., Rius J., 2000. Using Global Positioning System Techniques in Landslide Monitoring. Engineering Geology 55 (3), 167–192. https://doi.org/10.1016/S0013-7952(99)00127-1.

16. Herring T.A., King R.W., Floyd M., McClusky S.C., 2018. Introduction to GAMIT/GLOBK. Release 10.7. Technical Report. Massachusetts Institute of Technology, 54 p. Available from: http://geoweb.mit.edu/gg/Intro_GG.pdf (Last Accessed December 07, 2021).

17. Hudnut K.W., King N.E., Galetzka J.E., Stark K.F., Behr J.A., Aspiotes. A., van Wyk S., Moffitt R., Dockter S., Wyatt F., 2002. Continuous GPS Observations of Postseismic Deformation Following the 16 October 1999 Hector Mine, California, Earthquake (MW=7.1). Bulletin of the Seismological Society of America 92 (4), 1403–1422. https://doi.org/10.1785/0120000912.

18. Johnson K.M., Segall P., 2004. Imaging the Ramp–Décollement Geometry of the Chelungpu Fault Using Coseismic GPS Displacements from the 1999 Chi-Chi, Taiwan Earthquake. Tectonophysics 378 (1–2), 123–139. https://doi.org/10.1016/j.tecto.2003.10.020.

19. Larson K., Bodin P., Gomberg J., 2003. Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake. Science 300, 1421–1424. https://doi.org/10.1126/science.1084531.

20. Lukhnev A.V., Sankov V.A., Miroshnichenko A.I., Ashurkov S.V., Byzov L.M., Sankov A.V., Bashkuev Yu.B., Dembelov M.G., Calais E., 2013. GPS-Measurements of Recent Crustal Deformation in the Junction Zone of the Rift Segments in the Central Baikal Rift System. Russian Geology and Geophysics 54 (11), 1417–1426. https://doi.org/10.1016/j.rgg.2013.10.010.

21. Lukhnev A.V., Sankov V.A., Miroshnichenko A.I., Ashurkov S.V., Calais E., 2010. GPS Rotation and Strain Rates in the Baikal–Mongolia Region. Russian Geology and Geophysics 51 (7), 785–793. https://doi.org/10.1016/j.rgg.2010.06.006.

22. Lukhnev A.V., Sankov V.A., Miroshnichenko A.I., Sankov A.V., Byzov L.M., 2021. Tectonic Deformations and Subsequent Seismic Events in the Southwestern Flank of the Baikal Rift System Based on GPS Data. Doklady Earth Sciences 500, 756–760. https://doi.org/10.1134/S1028334X21090130.

23. Lukhneva O.F., Dembelov M.G., Lukhnev A.V., 2016. The Determination of Atmospheric Water Content from Meteorological and GPS Data. Geodynamics & Tectonophysics 7 (4), 545–553 (in Russian). https://doi.org/10.5800/GT-2016-7-4-0222.

24. Métivier L., Collilieux X., Lercier D., Altamimi Z., Beauducel F., 2014. Global Coseismic Deformations, GNSS Time Series Analysis, and Earthquake Scaling Laws. Journal of Geophysical Research: Solid Earth 119 (12), 9095–9109. https://doi.org/10.1002/2014JB011280.

25. Miroshnichenko A.I., Radziminovich N.A., Lukhnev A.V., Zuev F.L., Demberel S., Erdenezul D., Ulziibat M., 2018. First Results of GPS Measurements on the Ulaanbaatar Geodynamic Testing Area. Russian Geology and Geophysics 59 (8), 1049–1059. https://doi.org/10.1016/j.rgg.2018.07.023.

26. Parfeevets A.V., Sankov V.A., Miroshnichenko A.I., Lukhnev A.V., 2002. Evolution of the Crustal Stress State of the Mongolia–Baikal Mobile Belt. Russian Journal of Pacific Geology 21 (1), 14–28 (in Russian).

27. Sankov V.A., Lukhnev A.V., Miroshnitchenko A.I., Dobrynina A.A., Ashurkov S.V., Byzov L.M., Dembelov M.G., Calais E., Déverchère J., 2014. Contemporary Horizontal Movements and Seismicity of the South Baikal Basin (Baikal Rift System). Izvestiya, Physics of the Solid Earth 50, 785–794. https://doi.org/10.1134/S106935131406007X.

28. Sankov V.A., Miroshnitchenko A.I., Levi K.G., Lukhnev A.V., Melnikov A.I., Delvaux D., 1997. Cenozoic Stress Field Evolution in the Baikal Rift Zone. Bulletin du Centre de Recherches Elf Exploration Production 21 (2), 435–455.

29. Sankov V.A., Miroshnichenko A.I., Parfeevets A.V., Arzhannikova A.V., Lukhnev A.V., 2004. Late Cenozoic State of Stress in the Earth’s Crust of the Khubsugul Region (Northern Mongolia): Field and Experimental Evidence. Geotectonics 2, 78–90 (in Russian).

30. Sankov V.A., Parfeevets A.V., Lukhnev A.V., Miroshnichenko A.I., Ashurkov S.V., 2011. Late Cenozoic Geodynamics and Mechanical Coupling of Crustal and Upper Mantle Deformations in the Mongolia-Siberia Mobile Area. Geotectonics 45, 378–393. https://doi.org/10.1134/S0016852111050049.

31. Takahashi H., 2011. Static Strain and Stress Changes in Eastern Japan due to the 2011 off the Pacific Coast of Tohoku Earthquake, as Derived from GPS Data. Earth, Planets Space 63, 42. https://doi.org/10.5047/eps.2011.06.049.


Review

For citations:


Lukhnev A.V., Lukhneva O.F., Sankov V.A., Miroshnichenko A.I. COSEISMIC EFFECTS OF THE 11 JANUARY 2021 HOVSGOL, MONGOLIA, EARTHQUAKE. Geodynamics & Tectonophysics. 2022;13(2):0626. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0626

Views: 712


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)