APPLICATION OF TOTAL-REFLECTION X-RAY FLUORESCENCE SPECTROMETRY (TXRF) TO GEOLOGICAL OBJECTS: EXPERIENCE OF THE TXRF LABORATORY, CENTER FOR GEODYNAMICS AND GEOCHRONOLOGY
https://doi.org/10.5800/GT-2022-13-2s-0601
Abstract
Unlike conventional X-ray fluorescence spectrometry, the total-reflection X-ray fluorescence spectrometry is not a widespread and routine method for analyzing solid samples with mineral matrix, but it has a great potential for geochemical, geological, and archaeological studies. Rapid multi-elemental analysis of very small sample amounts can be performed by the internal standard method which does not require the matrix-matched reference materials. This is an undoubted advantage of the TXRF method over the conventional X-ray fluorescence method, especially if there is a limited available sample amount and a lack of well-characterized reference materials. This paper presents our experience with the application of TXRF spectrometry in the elemental analysis of apatite, ceramics, sediments, ores, and nodules. Special attention has been paid to the sample preparation procedure because it is one of the main sources of errors in the analysis. Preparing thin homogeneous specimen from the solid sample with a complex mineral matrix is not easy. Sample preparation strategy should be chosen considering the features of an analytical object, the content of the elements to be determined, and the accuracy required for a reliable interpretation. Consideration is being given to the examples of the preparation of a suspension for rapid analysis of ores and sediments, and to the original techniques of chemical decomposition for apatite and ceramics.
Keywords
About the Authors
A. S. MaltsevRussian Federation
128 Lermontov St, Irkutsk 664033
G. V. Pashkova
Russian Federation
128 Lermontov St, Irkutsk 664033
References
1. Akhmetzhanov T.F., Pashkova G.V., Chubarov V.M., Labutin T.A., Popov A.M., 2021. Three Calibration Techniques Combined with Sample-Effective Design of Experiment Based on Latin Hypercube Sampling for Direct Detection of Lanthanides in REE-Rich Ores Using TXRF and WDXRF. Journal of Analytical Atomic Spectrometry 36 (1), 224–232. https://doi.org/10.1039/D0JA00264J.
2. Chubarov V.M., Pashkova G.V., Panteeva S.V., Amosova A.A., 2021. Multielement Analysis of Continental and Lacustrine Ferromanganese Nodules by WDXRF, TXRF, and ICP-MS Methods. Intercomparison Study and Accuracy Assessment. Applied Radiation and Isotopes 178, 109981. https://doi.org/10.1016/j.apradiso.2021.109981.
3. Compton A.H., 1923. CXVII. The Total Reflexion of X-Rays. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 45 (270), 1121–1131. https://doi.org/10.1080/14786442308634208.
4. Klockenkämper R., von Bohlen A., 2015. Total-Reflection X-Ray Fluorescence Analysis and Related Methods. Wiley, Hoboken, USA, 552 p. https://doi.org/10.1002/9781118985953.
5. Maltsev A.S., Chuparina E.V., Pashkova G.V., Sokol’nikova J.V., Zarubina O.V., Shuliumova A.N., 2021a. Features of Sample Preparation Techniques in the Total-Reflection X-Ray Fluorescence Analysis of Tea Leaves. Food Chemistry 343, 128502. https://doi.org/10.1016/j.foodchem.2020.128502.
6. Maltsev A.S., Ivanov A.V., Chubarov V.M., Pashkova G.V., Panteeva S.V., Reznitskii L.Z., 2020. Development and Validation of a Method for Multielement Analysis of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Talanta 214, 120870. https://doi.org/10.1016/j.talanta.2020.120870.
7. Maltsev A.S., Ivanov A.V., Pashkova G.V., Marfin A.E., Bishaev Y.A., 2021b. New Prospects to the Multi-Elemental Analysis of Single Microcrystal of Apatite by Total-Reflection X-Ray Fluorescence Spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy 184, 106281. https://doi.org/10.1016/j.sab.2021.106281.
8. Maltsev A.S., Pashkova G.V., Fernández-Ruiz R., Demonterova E.I., Shuliumova A.N., Umarova N.N., Shergin D.L., Mukhamedova M.M., Chubarov V.M., Mikheeva E.A., 2021c. Characterization of Archaeological Ceramics from Eastern Siberia by Total-Reflection X-Ray Fluorescence Spectrometry and Principal Component Analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 175, 106012. https://doi.org/10.1016/j.sab.2020.106012.
9. Maltsev A.S., Sharykina D.S., Chuparina E.V., Pashkova G.V., Revenko A.G., 2019a. Multielement Analysis of Tea by Total Reflection X-Ray Fluorescence Spectrometry. Analytics and Control 23 (2), 247–257. http://dx.doi.org/10.15826/analitika.2019.23.2.009.
10. Maltsev A.S., von Bohlen A., Yusupov R.A., Bakhteev S.A., 2019b. Evaluation of Analytical Capabilities of Total Reflection X-Ray Fluorescence Spectrometry for the Analysis of Drinks with Sucrose Matrix. Analytics and Control 23 (4), 483–493. http://dx.doi.org/10.15826/analitika.2019.23.4.009.
11. Maltsev A.S., Yusupov R.A., Bakhteev S.A., 2022. Overcoming Absorption Effects in the Determination of Light Elements in Beverages by Total‐Reflection X‐Ray Spectrometry. X-Ray Spectrometry. Special Issue Article, 1–8. https://doi.org/10.1002/xrs.3283.
12. Pashkova G.V., Aisueva T.S., Finkelshtein A.L., Cherkashina T.Y., Shchetnikov A.A., 2018a. Quantitative Approaches to the Determination of Elements in Lake Sediments by Total Reflection X-Ray Fluorescence. Microchemical Journal 143, 264–271. https://doi.org/10.1016/j.microc.2018.08.020.
13. Pashkova G.V., Aisueva T.S., Finkelshtein A.L., Ivanov E.V., Shchetnikov A.A., 2016. Analytical Approaches for Determination of Bromine in Sediment Core Samples by X-Ray Fluorescence Spectrometry. Talanta 160, 375–380. https://doi.org/10.1016/j.talanta.2016.07.059.
14. Pashkova G.V., Chubarov V.M., Akhmetzhanov T.F., Zhilicheva A.N., Mukhamedova M.M., Finkelshtein A.L., Belozerova O.Y., 2020. Total-Reflection X-Ray Fluorescence Spectrometry as a Tool for the Direct Elemental Analysis of Ores: Application to Iron, Manganese, Ferromanganese, Nickel-Copper Sulfide Ores and Ferromanganese Nodules. Spectrochimica Acta Part B: Atomic Spectroscopy 168, 105856. https://doi.org/10.1016/j.sab.2020.105856.
15. Pashkova G.V., Mukhamedova M.M., Chubarov V.M., Maltsev A.S., Amosova A.A., Demonterova E.I., Mikheeva E.A., Shergin D.L., Pellinen V.A., Teten’kin A.V., 2021. Comparative Analysis of X-Ray Fluorescence Methods for Elemental Composition Determination of the Archaeological Ceramics from Low Sample Quantity. Analytics and Control 25(1), 20-33. http://dx.doi.org/10.15826/analitika.2020.25.1.001.
16. Pashkova G.V., Revenko A.G., 2013a. Choice of Conditions for the Natural Water Analysis Using a Total Reflection X-Ray Fluorescence Spectrometer. Analytics and Control 17 (1), 10–20. http://dx.doi.org/10.15826/analitika.2013.17.1.002.
17. Pashkova G.V., Revenko A.G., 2013b. Determination of Elements in Water Using a Total Reflection X-Ray Fluorescence Spectrometer. Analytics and Control 17 (2), 122–140. http://dx.doi.org/10.15826/analitika.2013.17.2.001.
18. Pashkova G.V., Revenko A.G., 2015. A Review of Application of Total Reflection X-Ray Fluorescence Spectrometry to Water Analysis. Applied Spectroscopy Reviews 50 (6), 443–472. https://doi.org/10.1080/05704928.2015.1010205.
19. Pashkova G.V., Revenko A.G., Finkelshtein A.L., 2013. Study of Factors Affecting the Results of Natural Water Analyses by Total Reflection X‐Ray Fluorescence. X‐Ray Spectrometry 42 (6), 524–530. https://doi.org/10.1002/xrs.2513.
20. Pashkova G.V., Smagunova A.N., Finkelshtein A.L., 2018b. X-Ray Fluorescence Analysis of Milk and Dairy Products: A Review. TrAC Trends in Analytical Chemistry 106, 183–189. https://doi.org/10.1016/j.trac.2018.06.014.
21. Smagunova A.N., Pashkova G.V., 2013. Choice of Optimal Conditions for X‐Ray Fluorescence Analysis of Milk Products with Varying Fat Content. X‐Ray Spectrometry 42 (6), 546–551. https://doi.org/10.1002/xrs.2519.
22. Yoneda Y., Horiuchi T., 1971. Optical Flats for Use in X‐Ray Spectrochemical Microanalysis. Review of Scientific Instruments 42 (7), 1069–1070. https://doi.org/10.1063/1.1685282.
Review
For citations:
Maltsev A.S., Pashkova G.V. APPLICATION OF TOTAL-REFLECTION X-RAY FLUORESCENCE SPECTROMETRY (TXRF) TO GEOLOGICAL OBJECTS: EXPERIENCE OF THE TXRF LABORATORY, CENTER FOR GEODYNAMICS AND GEOCHRONOLOGY. Geodynamics & Tectonophysics. 2022;13(2):0601. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0601