SEARCH FOR AEROSOL MICROPARTICLES IN DATED LAYERS OF BOTTOM SEDIMENTS USING SYNCHROTRON RADIATION
https://doi.org/10.5800/GT-2022-13-2-0581
Abstract
The SR-micro-XRF method was used to search for microparticles of extraterrestrial matter in the bottom sediments of Lake Zapovednoye, located 60 km from the epicentre of the explosion of the Tunguska cosmic body (TCB) in 1908. The material of bottom sediments dating back to 1908–1910 was studied. The samples for the study were prepared in the form of a powder applied to a conductive adhesive tape, which made it possible to combine the data of optical observations, electron microscopy, and micro-XRF scanning. The experiments were carried out at the Large-Scale Research Facilities "Kurchatov Centre for Synchrotron Research" using a confocal X-ray microscope developed at the Budker Institute of Nuclear Physics SB RAS. The data obtained indicate the presence of microparticles with an increased Ni/Fe ratio, possibly of extraterrestrial origin.
Keywords
About the Authors
A. V. DarinRussian Federation
3 Academician Koptyug Ave, Novosibirsk 630090
F. A. Darin
Russian Federation
11 Academician Lavrentiev Ave, Novosibirsk 630090;
1 Nikol’skiy Ave, Koltsovo 630559
Ya. V. Rakshun
Russian Federation
11 Academician Lavrentiev Ave, Novosibirsk 630090
D. S. Sorokoletov
Russian Federation
11 Academician Lavrentiev Ave, Novosibirsk 630090
A. A. Gogin
Russian Federation
1 Academician Kurchatov Sq, Moscow 123182
R. A. Senin
Russian Federation
1 Academician Kurchatov Sq, Moscow 123182
References
1. Chandrakasan G., Ayala M.T., Trejo J.F.G., Marcus G., Carroll D.L., 2021. Mapping and Distribution of Speciation Changes of Metals from Nanoparticles in Environmental Matrices Using Synchrotron Radiation Techniques. Environmental Nanotechnology, Monitoring & Management 16, 100491. https://doi.org/10.1016/j.enmm.2021.100491.
2. Darin A.V., Chu G., Sun Q., Babich V.V., Kalugin I.A., Markovich T.I., Novikov V.S., Darin F.A., Rakshun Y.V., 2020a. Archive Data on Climate Changes and Seismic Events in Glacial Clays of Lake Kucherla (Altai Region, Russia). Geodynamics & Tectonophysics 11 (3), 624–631 (in Russian) https://doi.org/10.5800/GT-2020-11-3-0495.
3. Darin A.V., Rogozin D.Y., Meydus A.V., Babich V.V., Kalugin I.A., Markovich T.I., Rakshun Y.V., Darin F.A., Sorokoletov D.S., Gogin A.A., Senin R.A., Degermendzhi A.G., 2020b. Traces of the Tunguska Event (1908) in Sediments of Zapovednoe Lake Based on SR–XRF Data. Doklady Earth Sciences 492, 442–445. https://doi.org/10.1134/S1028334X20060045.
4. Darin F.A., Rakshun Ya.V., Sorokoletov D.S., Darin A.V., Kalugin V.M., 2017. Development of Micro-X-Ray Fluorescence Methods with Synchrotron Beams from the VEPP-3 Storage Ring and Their Use to Study the Distribution of Elements in Natural Samples. Nuclear Physics and Engineering 8 (1), 86–90 (in Russian). https://doi.org/10.1134/S2079562917010067.
5. Darin F.A., Rakshun Ya.V., Sorokoletov D.S., Darin A.V., Rashchenko S.V., Sharygin V.V., Senin R.A., Gogin A.A., 2019. Distribution of Germanium and Other Elements in Samples of the Chelyabinsk Meteorite, Determined via Scanning Synchrotron Radiation X-Ray Fluorescence Microanalysis. Bulletin of the Russian Academy of Sciences: Physics 83, 1433–1436. https://doi.org/10.3103/S1062873819110078.
6. Darin F.A., Sorokoletov D.S., Rakshun Y.V., Darin A.V., Veksler I.V., 2018. On the Search and Localization of Platinum-Group Microelements in Samples of the Chromite Horizon in the Bushveld Complex. Journal of Surface Investigation: X-Ray, Synchrotron and Neutron Techniques 12 (1), 123–127. https://doi.org/10.1134/S1027451018010263.
7. Darin F., Sorokoletov D., Rakshun Y., Darin A., Volodin A., Kriventsov V., 2020c. Micro-XANES (W-L2) Study of the Sikhote-Alin Meteorite. In: B. Knyazev, N. Vinokurov (Eds), Synchrotron and Free Electron Laser Radiation: Generation and Application (SFR 2020). AIP Conference Proceedings (July 13–16, 2020, Novosibirsk, Russia). Vol. 2299. AIP, 080005. https://doi.org/10.1063/5.0030495.
8. Guilherme A., Buzanich G., Carvalho M.L, 2012. Focusing Systems for the Generation of X-Ray Micro Beam: An Overview. Spectrochimica Acta Part B: Atomic Spectroscopy 77, 1–8. https://doi.org/10.1016/j.sab.2012.07.021.
9. Ingerle D., Swies J., Iro M., Wobrauschek P., Streli C., Hradil K., 2020. A Monochromatic Confocal Micro-X-Ray Fluorescence (XRF) Spectrometer for the Lab. Review of Scientific Instruments 91, 123107. https://doi.org/10.1063/5.0028830.
10. Kumakhov M.A., 2000. Capillary Optics and Their Use in X-Ray Analysis. X-Ray Spectrometry 29 (5), 343–348 https://doi.org/10.1002/1097-4539(200009/10)29:5<343::AIDXRS414>3.0.CO;2-S.
11. Lemelle L., Simionovici A., Schoonjans T., Tucoulou R., Enrico E., Salomé M., Hofmann A., Cavalazzi B., 2017. Analytical Requirements for Quantitative X-Ray Fluorescence Nano-Imaging of Metal Traces in Solid Samples. TrAC Trends in Analytical Chemistry 91, 104–111. https://doi.org/10.1016/j.trac.2017.03.008.
12. Lim C., Ikehara K., Toyoda K., 2008. Cryptotephra Detection Using High-Resolution Trace-Element Analysis of Holocene Marine Sediments, Southwest Japan. Geochimica et Cosmochimica Acta 72 (20), 5022–5036. https://doi.org/10.1016/j.gca.2008.07.021.
13. Peti L., Augustinus P.C., Gadd P.S., Davies S.J., 2019. Towards Characterising Rhyolitic Tephra Layers from New Zealand with Rapid, Non-Destructive μ-XRF Core Scanning. Quaternary International 514, 161–172. https://doi.org/10.1016/j.quaint.2018.06.039.
14. Revenko A.G., 2021. X-Ray Spectral Analysis Development in Novosibirsk City (Electron Probe Microanalysis and X-Ray Fluorescence Analysis Using the Synchrotron Radiation). Analytics and Control 25 (2), 155–173 (in Russian) http://dx.doi.org/10.15826/analitika.2021.25.2.006.
15. Scruggs B., Haschke M., Herczeg L., Nicolosi J., 2000. XRF Mapping: New Tools for Distribution Analysis. Advances in X-Ray Analysis 42, 19–25.
Review
For citations:
Darin A.V., Darin F.A., Rakshun Ya.V., Sorokoletov D.S., Gogin A.A., Senin R.A. SEARCH FOR AEROSOL MICROPARTICLES IN DATED LAYERS OF BOTTOM SEDIMENTS USING SYNCHROTRON RADIATION. Geodynamics & Tectonophysics. 2022;13(2):0581. (In Russ.) https://doi.org/10.5800/GT-2022-13-2-0581