Preview

Geodynamics & Tectonophysics

Advanced search

87Sr/86Sr ISOTOPE RATIOS IN THE RIVER WATERS OF THE SOUTHERN URALS

https://doi.org/10.5800/GT-2022-13-2s-0602

Abstract

87Sr/86Sr isotopic ratios are widely used to identify strontium sources and study strontium behaviour in(bio)geochemical cycles. 87Sr/86Sr in surface waters can reflect the average composition of bioavailable (i.e. available forfurther absorption by plants and animals) strontium in the catchment specific area. Based on those 87Sr/86Sr ratios, theregional maps of the bioavailable strontium distribution (strontium isoscapes) can be compiled. A complex block structurecharacterizes the Ural mountain system. Individual parts (blocks) are composed of rocks of various ages, genesis andgeochemical characteristics, which can radically change at a distance of several tens of kilometres. Such variability wouldbe reflected in strontium isotopic ratios, thus making it possible to determine the local isotopic signatures of bioavailablestrontium.

This work aimed to study 87Sr/86Sr in the water in the rivers of the Southern Urals. We determined the contents andisotopic ratios of strontium in river water samples collected from the territories of the Orenburg and Chelyabinsk regionsand the Republic of Bashkortostan in 2019–2020.

For the first time in the surface water of the rivers in the Southern Urals (Ural, Belaya, Tobol, Karagaily-Ayat, Sim, andothers), the 87Sr/86Sr isotopic ratios have been determined, and their variations have been analyzed. 87Sr/86Sr values varyin the range 0.70666–0.71063 (average 0.70908) for the rivers of the Urals basin, 0.70749–0.71058 (average 0.70924)for the Kama-Volga basin, 0.70946–0.71176 (average 0.71071) for the Tobol basin. Such features of the strontium isotopiccomposition may be due to the influence of underlying rocks of the catchment area drained by river water. The dataobtained can be used to identify the sources of strontium input into the water system during hydrological and environmentalstudies; to confirm the authenticity of food products of plant and animal origin; to carry out comparisons in thestudies of the migration of ancient people and animals, as well as to determine the raw material areas for the productionof vegetable and woollen textiles and wooden products in antiquity.

About the Authors

D. V. Kiseleva
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



E. S. Shagalov
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



T. G. Okuneva
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



N. G. Soloshenko
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



А. D. Ryanskaya
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



E. A. Pankrushina
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



S. V. Karpova
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



K. K. Urazov
Zavaritsky Institute of Geology and Geochemistry, Ural Branch of the Russian Academy of Sciences
Russian Federation

15 Akademika Vonsovskogo St, Ekaterinburg 620016



A. R. Sidoruk
Ural Federal University
Russian Federation

19 Mira St, Ekaterinburg 620002



References

1. Bea F., Fershtater G.B., Montero P., Smirnov V.N., Molina J.F.,2005. Deformation-Driven Differentiation of Granite Magma:The Stepninsk Pluton of the Uralides, Russia. Lithos 81,209–233. https://doi.org/10.1016/j.lithos.2004.10.004.

2. Frei K.M., Frei R., 2010. The Geographic Distribution ofStrontium Isotopes in Danish Surface Waters – A Base forProvenance Studies in Archaeology, Hydrology and Agriculture.Applied Geochemistry 26 (3), 326–340. https://doi.org/10.1016/j.apgeochem.2010.12.006.

3. Frost C.D., Toner R.N., 2004. Strontium Isotopic Identificationof Water‐Rock Interaction and Ground Water Mixing.Ground Water 42 (3), 418–432. https://doi.org/10.1111/j.1745-6584.2004.tb02689.x.

4. Gorokhov I.M., Zaitseva T.S., Kuznetsov A.B., OvchinnikovaG.V., Arakelyants M.M., Kovach V.P., Konstantinova G.V.,Turchenko T.L., Vasilyeva I.M., 2019. Isotope Systematics andAge of Authigenic Minerals in Shales of the Upper RipheanInzer Formation, South Urals. Stratigraphy and GeologicalCorrelation 27, 133–158. https://doi.org/10.1134/S0869593819020035.

5. Kasyanova A.V., Streletskaya M.V., Chervyakovskaya M.V.,Kiseleva D.V., 2019. A Method for 87Sr/86Sr Isotope Ratio Determinationin Biogenic Apatite by MC-ICP-MS Using theSSB Technique. AIP Conference Proceedings 2174, 020028.https://doi.org/10.1063/1.5134179.

6. Kiseleva D.V., Shagalov E.S., Chervyatsova O.Ya., OkunevaT.G., Soloshenko N.G., 2020. Sr Isotope Ratios in theWater-Rock System of the Shulgan-Tash (Kapova) Cave. Proceedingsof the Fersman Scientific Session of the GI KSC RAS17, 260–264 (in Russian) https://doi.org/10.31241/FNS.2020.17.049.

7. KiselevaD.V., ShagalovE.S., ZaitsevaM.V., StreletskayaM.V.,KarpovaS.V., 2018. Isotope-Geochemical (Sr, Pb) Study ofthe Section of the Soil and Plant Layer in the Area of ArchaeologicalSites of the Bronze Age in the Southern Urals.Geoarchaeology and Archaeological Mineralogy 10, 37–41(in Russian)

8. Kuznetsov A.B., Gorokhov I.M., Semikhatov M.A., KislovaI.V., MaslovA.V., KrupeninM.T., PrasolovE.M., 2006. NewData on Sr- and C-Isotopic Chemostratigraphy of the UpperRiphean Type Section (Southern Urals). Stratigraphy andGeological Correlation 14, 602–628. https://doi.org/10.1134/S0869593806060025.

9. Muynck D.D., Huelga-Suarez G., Heghe L.V., Degryse P.,Vanhaecke F., 2009. Systematic Evaluation of a Strontium-Specific Extraction Chromatographic Resin for Obtaining aPurified Sr Fraction with Quantitative Recovery from Complexand Ca-Rich Matrices. Journal of Analytical AtomicSpectrometry 24, 1498–1510. https://doi.org/10.1039/B908645E.

10. Nier A.O., 1938. The Isotopic Constitution of Strontium,Barium, Bismuth, Thallium and Mercury. Physical Review 54(4), 275–278. https://doi.org/10.1103/PhysRev.54.275.

11. Petrov O.V. (Ed.), 2016. Geological Map of Russia andAdjacent Water Areas. Scale 1:2500000. VSEGEI PublishingHouse, Saint Petersburg (in Russian)

12. Price T.D., Burton J.H., Bentley R.A., 2002. The Characterizationof Biologically Available Strontium Isotope Ratiosfor the Study of Prehistoric Migration. Archaeometry 44 (1),117–136. https://doi.org/10.1111/1475-4754.00047.

13. Puchkov V.N., 2000. Paleogeodynamics of the Southernand Middle Urals. Gilem, Ufa, 146 p. (inRussian)

14. Rauch E., Rummel S., Lehn C., Buttner A., 2007. OriginAssignment of Unidentified Corpses by Use of Stable IsotopeRatios of Light (Bio-) and Heavy (Geo-) Elements – A CaseReport. Forensic Science International 168 (2–3), 215–218.https://doi.org/10.1016/j.forsciint.2006.02.011.

15. Scharlotta I., Weber A., 2014. Mobility of Middle HoloceneForagers in the Cis-Baikal Region, Siberia: Individual LifeHistory Approach, Strontium Ratios, Rare Earth and TraceElements. Quaternary International 348, 37–65. https://doi.org/10.1016/j.quaint.2014.03.040.

16. Seravkin I.B., Kosarev A.M., Gorozhanin V.M., 2003. Rband Sr Isotopic Ratios and Radiologic Age of the VolcanogenicComplexes of the Baimak-Buribai (D1EMS), Irendyk(D1-D2e) and Karamalytash (D2e) Suites. Geological Collection3, 141–151 (in Russian)

17. State Geological Map of the Russian Federation, 2018. South Ural Series. Scale 1:200000. Sheet N-41-XXV (Kartaly).Explanatory Note. Moscow Branch of VSEGEI, Moscow, 175 p.(In Russian).

18. Tevelev A.V., Kosheleva I.A., Popov V.S., Kuznetsov I.E.,Osipova T.A., Pravikova N.V., Vostretsova E.S., Gustova A.S.,2006. Paleozoids of the Eastern Ural/Trans-Ural Junction.A.M. Nikishin (Ed.), Proceedings of the Laboratory of Orogeny.Iss. 4. MSU Publishing House, Moscow, 300 p. (in Russian)

19. West J.B., Bowen G.J., Dawson T.E., Tu K.P. (Eds), 2010.Isoscapes: Understanding Movement, Pattern, and Processon Earth through Isotope Mapping. Springer, 478 p. https://doi.org/10.1007/978-90-481-3354-3.

20. Zaitseva T.S., Gorokhov I.M., Ivanovskaya T.A., SemikhatovM.A., Kuznetsov A.B., Mel’nikov N.N., Arakelyants M.M.,Yakovleva O.V., 2008. Msbauer Characteristics, Mineralogyand Isotopic Age (Rb-Sr, K-Ar) of Upper Riphean Glauconitesfrom the UK Formation, the Southern Urals. Stratigraphyand Geological Correlation 16, 227–247. https://doi.org/10.1134/S0869593808030015.

21. Zieliński M., Dopieralska J., Belka Z., Walczak A., Siepak M.,Jakubowicz M., 2018. Strontium Isotope Identification ofWater Mixing and Recharge Sources in a River System (OderRiver, Central Europe): A Quantitative Approach. HydrologicalProcesses 32 (16), 2597–2611. https://doi.org/10.1002/hyp.13220.


Review

For citations:


Kiseleva D.V., Shagalov E.S., Okuneva T.G., Soloshenko N.G., Ryanskaya А.D., Pankrushina E.A., Karpova S.V., Urazov K.K., Sidoruk A.R. 87Sr/86Sr ISOTOPE RATIOS IN THE RIVER WATERS OF THE SOUTHERN URALS. Geodynamics & Tectonophysics. 2022;13(2):0602. (In Russ.) https://doi.org/10.5800/GT-2022-13-2s-0602

Views: 674


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)