LITHOLOGICAL AND FACIAL FEATURES, COMPOSITION, AND SEDIMENTATION CONDITIONS OF TERRIGENOUS-CARBONATE ROCKS OF THE MOTY GROUP (SHAMAN CLIFF, IRKUTSK REGION)
https://doi.org/10.5800/GT-2021-12-3-0542
Abstract
We have studied terrigenous-carbonate rocks in the area near the Sayan mountains in the Irkutsk Region (Russia), specifically at the Shaman Cliff, being the stratotype area of rocks that belong to the Moty group. The cliff’s lower part is composed of sandstones, which fragments gradually decrease in size upward the cross-section. The middle and upper parts are composed of sandy dolomites and dolomites, respectively. In terms of material characteristics, the terrigenous rocks correspond to arkoses. According to the genetic typification, the arkoses are composed of destructed primary igneous rocks. The terrigenous-carbonate rocks contain a carbonate component that gradually increases in the upper part of the cross-section. In the Shaman Cliff cross-section, we distinguish 32 lithological units and eight lithologicalgenetic types of deposits. Paleogeodynamic conditions are reconstructed for the formation of the sedimentation basin. Our study of the Shaman formation reveals specific features of the lithological facies, which suggest that these rocks accumulated in a coastal environment affected by tides. In the study area, clastic materials were mainly removed from an orogen that formed due to the Vendian accretion-collision events in the southern folded frame of the Siberian platform. Dolomites composing the upper part of the cliff are attributed to the Irkutsk formation of the Moty group. Their lithological features give evidence of shallow-marine conditions of their formation, without any supply of clastic material, which contributed to mass dispersal of the Cambrian biota described in [Marusin et al., 2021]. It is our first initiative to draw a boundary between the Shaman and Irkutsk formations of the Moty Group along the base of the carbonate eluvial breccia unit that marks the stratigraphic break. In the cross-section, this boundary represents the border between the Upper Vendian and Lower Cambrian.
Our conclusions are generally consistent with the ideas of most researchers about the Late Vendian evolution of the southern margin of the Siberian platform. The results of our study can be used in further investigation of this area and provide a basis for correlating the studied strata with the same-age reference cross-sections of other regions in Siberia.
Keywords
About the Authors
Z. L. MotovaRussian Federation
128 Lermontov St, Irkutsk 664033
A. V. Plyusnin
Russian Federation
4 Bolshoy Liteiny Ave, Irkutsk 664007
E. V. Nikulin
Russian Federation
4 Bolshoy Liteiny Ave, Irkutsk 664007
References
1. Donskaya T.V., 2020. Assembly of the Siberian Craton: Constraints from Paleoproterozoic Granitoids. Precambrian Research 348, 105869. https://doi.org/10.1016/j.precamres.2020.105869.
2. Gladkochub D.P., Donskaya T.V., Stanevich A.M., Pisarevsky S.A., Zhang S., Motova Z.L., Mazukabzov A.M., Li H., 2019. U-Pb Detrital Zircon Geochronology and Provenance of Neoproterozoic Sedimentary Rocks in Southern Siberia: New Insights into Breakup of Rodinia and Opening of Paleo-Asian Ocean. Gondwana Research 65, 1–16. https://doi.org/10.1016/j.gr.2018.07.007.
3. Khomentovsky V.V., Shenfil V.Yu., Yakshin M.S., 1972. Reference Cross-Sections of the Upper Precambrian and Lower Cambrian Deposits of the Southern Margin of the Siberian Platform. Nauka, Moscow, 356 p. (in Russian) [Хоментовский В.В., Шенфиль В.Ю., Якшин М.С. Опорные разрезы отложений верхнего докембрия и нижнего кембрия южной окраины Сибирской платформы. М.: Наука, 1972. 356 с.].
4. Kuznetsov V.G., 2011. Lithology – Fundamentals of General (Theoretical) Lithology. Nauchny Mir, Moscow, 360 p. (in Russian) [Кузнецов В.Г. Литология – основы общей (теоретической) литологии. М.: Научный мир, 2011. 360 с.].
5. Makhlaev M.L., 2002. Legend of the Angara-Yenisei Series Sheets of the State Geological Map of the Russian Federation. Scale 1:1000000. Third edition. Krasnoyarsk Geological Survey, Krasnoyarsk (in Russian) [Махлаев М.Л. Легенда Ангаро-Енисейской серии листов Государственной геологической карты РФ масштаба 1:1000000 (третье издание). Красноярск: Красноярскгеолсъемка, 2002].
6. Marusin V.V., Kolesnikova A.A., Kochnev B.B., Kuznetsov N.B., Pokrovsky B.G., Romanyuk T.V., Karlova G.A., Rud’ko S.V. et al., 2021. Detrital Zircon Age and Biostratigraphic and Chemostratigraphic Constraints on the Ediacaran–Cambrian Transitional Interval in the Irkutsk Cis–Sayans Uplift, Southwestern Siberian Platform. Geological Magazine 158 (7), 1156–1172. https://doi.org/10.1017/S0016756820001132.
7. Maslov A.V., 2005. Sedimentary Rocks: Study Methods and Data Interpretation. Urals State Mining University, Ekaterinburg, 289 p. (in Russian) [Маслов А.В. Осадочные породы: методы изучения и интерпретация полученных данных. Екатеринбург: УГГУ, 2005. 289 с.].
8. Pettijohn F., Potter P., Siever R., 1976. Sands and Sandstones. Mir, Moscow, 536 p. (in Russian) [Петтиджон Ф., Поттер П., Сивер Р. Пески и песчаники. М.: Мир, 1976. 536 с.].
9. Priyatkina N.S., Khudoley A.K., Collins W.J., Kuznetsov N.B., Huang H.Q., 2016. Detrital Zircon Record of Meso-and Neoproterozoic Sedimentary Basins in Northern Part of the Siberian Craton: Characterizing Buried Crust of the Basement. Precambrian Research 285, 21–38. https://doi.org/10.1016/j.precamres.2016.09.003.
10. Reinek G.E., Singkh I.B., 1981. Setting of Terrigenous Sedimentation. Nedra, Moscow, 440 p. (in Russian) [Рейнек Г.Э., Сингх И.Б. Обстановки терригенного осадконакопления. М.: Недра, 1981. 440 с.].
11. Rosen O.M., Abbyasov A.A., Migdisov A.A., Yaroshevskii A.A., 2000. MINLITH – a Program to Calculate the Normative Mineralogy of Sedimentary Rocks: the Reliability of Results Obtained for Deposits of Old Platforms. Geochemistry International 38 (4), 388–400.
12. Salop L.I., 1964. Geology of the Baikal Mountainous Area. Vol. 1. Nedra, Moscow, 515 p. (in Russian) [Салоп Л.И. Геология Байкальской горной области. М.: Недра, 1964. Т. 1. 515 с].
13. Savitsky V.E., Krasnov V.I., Khomentovsky V.V. (Eds), 1983. Decree of the All-Union Stratigraphic Conference on the Precambrian, Paleozoic and Quaternary System of Central Siberia (Novosibirsk, 1979). Part 1: Upper Proterozoic (Upper Precambrian) and Lower Paleozoic. Explanatory Notes. VSEGEI Publishing House, Leningrad, Novosibirsk, 215 p. (in Russian) [Решение Всесоюзного стратиграфического совещания по докембрию, палеозою, четвертичной системе Средней Сибири (Новосибирск, 1979 г.). Ч. 1: Верхний протерозой (верхний докембрий) и нижний палеозой: Объяснительные записки / Ред. В.Е. Савицкий, В.И. Краснов, В.В. Хоментовский. Ленинград, Новосибирск: Изд-во ВСЕГЕИ, 1983. 215 с.].
14. Selly R.C., 1989. Ancient Sedimentary Environments. Nedra, Moscow, 294 p. (in Russian) [Селли Р.Ч. Древние обстановки осадконакопления. М.: Недра, 1989. 294 с.].
15. Shabanov Yu.Ya. (Ed.), 2016. Stratigraphy of Siberian Oiland-Gas Basins. Cambrian of the Siberian Platform. Vol. 1. Institute of Petroleum Geology and Geophysics SB RAS, Novosibirsk, 497 p. (in Russian) [Стратиграфия нефтегазоносных бассейнов Сибири. Кембрий Сибирской платформы / Ред. Ю.Я. Шабанов. Новосибирск: ИНГГ СО РАН, 2016. Т. 1. 497 с.].
16. Shenfil V.Yu., 1991. Late Precambrian of the Siberian Platform. Nauka, Novosibirsk, 183 p. (in Russian) [Шенфиль В.Ю. Поздний докембрий Сибирской платформы. Новосибирск: Наука, 1991. 183 с.].
17. Sklyarov E.V. (Ed.), 2006. Evolution of the Southern Part of the Siberian Craton. In: Integration Projects of SB RAS. Iss. 11. Publishing House of SB RAS, Novosibirsk, 367 p. (in Russian) [Эволюция южной части Сибирского кратона // Интеграционные проекты СО РАН / Ред. Е.В. Скляров. Новосибирск: Изд-во СО РАН, 2006. Вып. 11. 367 с.].
18. Sovetov Yu.K., 1977. Upper Precambrian Sandstones of the Southwestern Siberian Platform. Nauka, Novosibirsk, 295 p. (in Russian) [Советов Ю.К. Верхнедокембрийские песчаники юго-запада Сибирской платформы. Новосибирск: Наука, 1977. 295 с.].
19. Sovetov Yu.K., 2018. Sedimentology and Stratigraphic Correlation of Vendian Deposits in the Southwestern Siberian Platform: Major Contribution of an Exocratonic Clastic Source to Sedimentary Systems. Lithosphere 18 (1), 20–45 (in Russian) [Советов Ю.К. Седиментология и стратиграфическая корреляция вендских отложений на юго-западе Сибирской платформы: выдающийся вклад внешнего источника кластического материала в образование осадочных систем // Литосфера. 2018. Т. 18. № 1. С. 20–45]. https://doi.org/10.24930/1681-9004-2018-18-1-020-045.
20. Sovetov Yu.K., Blagovidov V.V., 2004. Reconstruction of the Sedimentation Basin (Case of the Vendian Foredeep – Foreland Basin of the Southwestern Siberian Platform). In: Yu.G. Leonov, Yu.A. Volozh (Eds), Sedimentary Basins: Study Methods, Structure and Evolution. Nauchny Mir, Moscow, p. 159–212 (in Russian) [Советов Ю.К., Благовидов В.В. Реконструкция бассейна осадконакопления (на примере вендского передового прогиба – «форландового бассейна» юго-запада Сибирской платформы) // Осадочные бассейны: методы изучения, строение и эволюция / Ред. Ю.Г. Леонов, Ю.А. Волож. М.: Научный мир, 2004. С. 159–212].
21. Sovetov Yu.K., Kulikova A.E., Medvedev M.N., 2007. Sedimentary Basins in the Southwestern Siberian Craton: Late Neoproterozoic – Early Cambrian Riftng Ad Collisional Events. In: U. Linnemann, R.D. Nance, P. Kraft, G. Zulauf (Eds), The Evolution of the Rheic Ocean: from Avalonian-Cadomian Active Margin to Alleghenian-Variscan Collision. Geological Society of America Special Papers 423, 549–578. https://doi.org/10.1130/2007.2423(28).
22. Stanevich A.M., Mazukabzov A.M., Postnikov A.A., Nemerov V.K., Pisarevsky S.A., Gladkochub D.P., Donskaya T.V., Kornilova T.A., 2007. Northern Segment of the Paleoasian Ocean: Neoproterozoic Deposition History and Geodynamics. Russian Geology and Geophysics 48 (1), 46–60. https://doi.org/10.1016/j.rgg.2006.12.005.
23. Stanevich A.M., Nemerov V.K., Chatta E.N., 2006. Proterozoic Microfossils of the Sayan-Baikal Folded Area. Environments, Nature and Classification. GEO, Novosibirsk, 204 p. (in Russian) [Станевич А.М., Немеров В.К., Чатта Е.Н. Микрофоссилии протерозоя Саяно-Байкальской складчатой области. Обстановки обитания, природа и классификация. Новосибирск: Гео, 2006, 204 c.].
24. State Geological Map of the Russian Federation, 2009. Angara-Yenisei Series. Scale 1:1000000. Sheet N-48 (Irkutsk). Explanatory Note. VSEGEI Publishing House, Saint Petersburg, 574 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Ангаро-Енисейская. Масштаб 1:1000000. Лист N-48 (Иркутск): Объяснительная записка. СПб.: Изд-во ВСЕГЕИ, 2009. 574 с.].
25. State Geological Map of the Russian Federation, 2013. East Sayan Series. Scale 1:200000. Sheet N-48-XXXII. Explanatory Note. Moscow Branch of VSEGEI, Moscow, 186 p. (in Russian) [Государственная геологическая карта Российской Федерации. Серия Восточно-Саянская. Масштаб 1:200000. Лист N-48-XXXII: Объяснительная записка. М.: МФ ВСЕГЕИ, 2013. 186 c.].
26. Vishnyakov S.G., 1933. Carbonate Rocks and Field Study of Their Suitability for Soil Liming. In: Carbonate Rocks of the Leningrad Region, the Northern Krai and the Karelian Autonomous Soviet Socialist Republic. Iss. 2. Gosgorgeonefteizdat, Moscow, Leningrad, p. 3–22 (in Russian) [Вишняков С.Г. Карбонатные породы и полевое исследование их пригодности для известкования почвы // Карбонатные породы Ленинградской области, Северного края и Карельской АССР. М.-Л.: Госгоргеонефтеиздат, 1933. Вып. 2. С. 3–22].
27. Yudovich Ya.E., Ketris M.P., 2000. Fundamentals of Lithochemistry. Nauka, Saint Petersburg, 497 p. (in Russian) [Юдович Я.Э., Кетрис М.П. Основы литохимии. СПб.: Наука, 2000. 497 с.].
28. Zhamoyda A.I. (Ed.), 2019. Stratigraphic Code of Russia. VSEGEI Publishing House, Saint Petersburg, 92 p. (in Russian) [Стратиграфический кодекс России / Ред. А.И. Жамойда. СПб.: Изд-во ВСЕГЕИ, 2019. 92 с.].
Review
For citations:
Motova Z.L., Plyusnin A.V., Nikulin E.V. LITHOLOGICAL AND FACIAL FEATURES, COMPOSITION, AND SEDIMENTATION CONDITIONS OF TERRIGENOUS-CARBONATE ROCKS OF THE MOTY GROUP (SHAMAN CLIFF, IRKUTSK REGION). Geodynamics & Tectonophysics. 2021;12(3):628-644. (In Russ.) https://doi.org/10.5800/GT-2021-12-3-0542