Preview

Геодинамика и тектонофизика

Расширенный поиск

СЛЕДЫ ВЫСОКОЙ СЕЙСМИЧЕСКОЙ АКТИВНОСТИ В ПОВЕРХНОСТНЫХ ОТЛОЖЕНИЯХ ОЗЕРА БАЙКАЛ, СИБИРЬ

https://doi.org/10.5800/GT-2021-12-3-0538

Полный текст:

Аннотация

Осадконакопление в озере Байкал происходит на фоне постоянной сейсмической активности Байкальской рифтовой зоны. Современные и исторические землетрясения оказывают значительное влияние на формирование донных отложений в этом глубоком тектоническом бассейне. В статье представлены результаты международных исследований за период 1996–2019 гг. Для обнаружения следов сейсмических событий в самых верхних слоях отложений (<1.5 м) были отобраны короткие керны по всему озеру. Приведены карты с точками отбора кернов и сейсмичностью озера. Литологический состав, данные измерения магнитной восприимчивости, оценка органических и неорганических компонентов осадков позволяют определить индикаторы землетрясений в донных отложениях озера. Следы исторических землетрясений были обнаружены в пределах Южной котловины Байкала (районы станций Шарыжалгай и 106-й км Кругобайкальской железной дороги) и в заливе Провал рядом с дельтой р. Селенги.

Об авторах

Е. Г. Вологина
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



М. Штурм
Швейцарский федеральный институт науки и технологии окружающей среды
Швейцария

CH-8600, Дюбендорф, п/я 611



Я. Б. Радзиминович
Институт земной коры СО РАН
Россия

664033, Иркутск, ул. Лермонтова, 128



Список литературы

1. Ashurkov S.V., Sankov V.A., Miroshnichenko A.I., Lukhnev A.V., Sorokin A.P., Serov M.A., Byzov L.M., 2011. GPS Geodetic Constraints on the Kinematics of the Amurian Plate. Russian Geology and Geophysics 52 (2), 239–249. https://doi.org/10.1016/j.rgg.2010.12.017.

2. Bangs M., Battarbee R.W., Flower R.J., Jewson D., Lees J.A., Sturm M., Vologina E.G., Mackay A.W., 2000. Climate Change in Lake Baikal: Diatom Evidence in an Area of Continuous Sedimentation. International Journal of Earth Sciences 89, 251–259. https://doi.org/10.1007/s005319900063.

3. Beck C., Manalt F., Chapron E., Van Rensbergen P., De Batist M., 1996. Enhanced Seismicity in the Early Post-Glacial Period: Evidence from the Post-Würm Sediments of Lake Annecy, NW Alps. Journal of Geodynamics 22 (1–2), 155–171. https://doi.org/10.1016/0264-3707(96)00001-4.

4. Bulletin of the Permanent Central Seismic Commission (1905, January – December), 1907. In: News of the PCSC. Vol. 2. Iss. 3. Publishing House of the Imperial Academy of Sciences, Saint Petersburg, p. 1–307 (in Russian) [Бюллетень Постоянной центральной сейсмической комиссии. 1905. Январь–декабрь // Известия ПЦСК. Т. 2. Вып. 3. СПб.: Типография Императорской академии наук, 1907. С. 1–307].

5. Colman S.M., Kuptsov V.M., Jones G.A., Carter S.J., 1993. Radiocarbon Dating of Lake Baikal Sediments – A Progress Report. Geology and Geophysics 34 (10–11), 68–77 (in Russian) [Колман С.М., Купцов В.М., Джойнс Г.А., Картер С.Дж. Радиоуглеродное датирование байкальских осадков // Геология и геофизика. 1993. Т. 34. № 10–11. С. 68–77].

6. De Batist M., Canals M., Sherstyankin P., Alekseev S. and the INTAS Project 99-1669 Team, 2002. A New Bathymetriс Map of Lake Baikal. Deutsches GeoForschungsZentrum GFZ. https://doi.org/10.1594/GFZ.SDDB.1100.

7. Earthquake in Kultuk, 1905. In: Eastern Review 153. Irkutsk, July 15, p. 2–3 (in Russian) [Землетрясение в Култуке // Восточное обозрение. Иркутск, 1905, 15 июля. № 153. С. 2–3].

8. El-Robrini M., Gennesseaux M., Mauffret A., 1985. Consequences of the EI-Asnam Earthquakes: Turbidity Currents and Slumps on the Algerian Margin (Western Mediterranean) Geo-Marine Letters 5, 171–176. https://doi.org/10.1007/BF02281635.

9. Fanetti D., Anselmetti F.S., Chapron E., Sturm M., Vezzoli L., 2008. Megaturbidite Deposits in the Holocene Basin Fill of Lake Como (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology 259 (2–3), 323–340. https://doi.org/10.1016/j.palaeo.2007.10.014.

10. Gileva N.A., Melnikova V.I., Seredkina A.I., Radziminovich Ya.B., Tubanov Ts.A., 2017. The July 16, 2011, KR=14.5, Mw=5.2, I0=7–8 Turka Earthquke in Central Baikal. In: Earthquakes of the Northern Eurasia in 2011. Geophysical Survey of RAS, Obninsk, p. 370–378 (in Russian) [Гилёва Н.А., Мельникова В.И., Середкина А.И., Радзиминович Я.Б., Тубанов Ц.А. Туркинское землетрясение 16 июля 2011 г. с КР=14.5, Mw=5.2, I0=7–8 (Центральное Прибайкалье) // Землетрясения Северной Евразии, 2011 год. Обнинск: ФИЦ ЕГС РАН, 2017. С. 370–378].

11. Goldfinger C., 2011. Submarine Paleoseismology Based on Turbidite Records. Annual Review of Marine Science 3, 35–66. https://doi.org/10.1146/annurev-marine-120709-142852.

12. Goldfinger C., Nelson C.H., Johnson J.E., Shipboard Scientific Party, 2003. Holocene Earthquake Records from the Cascadia Subduction Zone and Northern San Andreas Fault Based on Precise Dating of Offshore Turbidites. Annual Review of Earth and Planetary Sciences 31, 555–577. https://doi.org/10.1146/annurev.earth.31.100901.141246.

13. Goldyrev G.S., 1975. Lithofacies of Bottom Sediments. In: G.I. Galazii, Yu.P. Parmuzin (Eds), Dynamics of the Baikal Basin. Nauka, Novosibirsk, p. 181–191 (in Russian) [Голдырев Г.С. Литофации донных осадков // Динамика Байкальской впадины / Ред. Г.И. Галазий, Ю.П. Пармузин. Новосибирск: Наука, 1975. С. 181–191].

14. Golenetskii S.I., 1996. Macroseismic Effects of the Catastrophic Tsagan, Baikal Earthquake of 1862. Izvestiya, Physics of the Solid Earth 32 (11), 849–858.

15. Granina L., Mueller B., Wehrli B., Martin P., 2000. Oxygen, Iron, and Manganese at the Sediment Water Interface in Lake Baikal. Terra Nostra 9, 87–94.

16. Gutiérrez-Pastor J., Nelson C.H., Goldfinger C., Escutia C., 2013. Sedimentology of Seismo-Turbidites of the Cascadia and Northern California Active Tectonic Continental Margins, Northwest Pacific Ocean. Marine Geology 336, 99–119. https://doi.org/10.1016/j.margeo.2012.11.010.

17. Hus R., De Batist M., Klerkx J., Matton C., 2006. Fault Linkage in Continental Rifts: Structure and Evolution of a Large Relay Ramp in Zavarotny, Lake Baikal (Russia). Journal of Structural Geology 28 (7), 1338–1351. https://doi.org/10.1016/j.jsg.2006.03.031.

18. Inouchi Y., Kinugasa Y., Kumon F., Nakano S., Yasumatsu S., Shiki T., 1996. Turbidites as Records of Intense Palaeoearthquakes in Lake Biwa, Japan. Sedimentary Geology 104 (1–4), 117–125. https://doi.org/10.1016/0037-0738(95)00124-7.

19. Jarvis A., Reuter H.I., Nelson A., Guevara E., 2008. Hole-Filled Seamless SRTM Data V4. International Centre for Tropical Agriculture (CIAT). Available from: http://srtm.csi.cgiar.org (Last Accessed November 22, 2020).

20. Karabanov E.B., 1999. Geological Structure of the Sedimentary Sequence of Lake Baikal and Reconstruction of Climate Change in Central Asia in the Late Cenozoic. Brief PhD Thesis (Doctor of Geology and Mineralogy). Moscow, 72 p. [Карабанов Е.Б. Геологическое строение осадочной толщи озера Байкал и реконструкции изменений климата Центральной Азии в позднем кайнозое: Автореф. дис. … докт. геол.-мин. наук. М., 1999. 72 с.].

21. Kondorskaya N.V., Shebalin N.V. (Eds), 1982. New Catalog of Strong Earthquakes in the USSR from Ancient Times through 1977. World Data Center A. Report SE-31, Boulder, USA, 608 p.

22. Kuz’min M.I., Karabanov E.B., Kawai T., Williams D., Bychinskii V.A., Kerber E.V., Kravchinskii V.A., Bezrukova E.V. et al., 2001. Deep Drilling on Lake Baikal: Main Results. Russian Geology and Geophysics 42 (1–2), 6–32.

23. Lees J.A., Flower R.J., Ryves D., Vologina E., Sturm M., 1998. Identifying Sedimentation Patterns in Lake Baikal Using Whole Core and Surface Scanning Magnetic Susceptibility. Journal of Paleolimnology 20, 187–202. https://doi.org/10.1023/A:1008043230549.

24. Logachev N.A., 2000. A Rational Subdivision of Geological Structure in the Baikal Lake Basin. Doklady Earth Sciences 375 (9), 1366–1370.

25. Logachev N.A., 2003. History and Geodynamic of the Baikal Rift. Russian Geology and Geophysics 44 (5), 391–406.

26. Martin P., Granina L., Martens K., Goddeeris B., 1998. Oxygen Concentration Profiles in Sediments of Two Ancient Lakes: Lake Baikal (Siberia, Russia) and Lake Malawi (East Africa). Hydrobiologia 367, 163–174. https://doi.org/10.1023/A:1003280101128.

27. Matton C., Klerkx J., 1995. Basin Structure in the Western Part of Northern Lake Baikal: The Zavorotny Area. Russian Geology and Geophysics 36 (10), 168–174.

28. Mel’nikova V.I., Gileva N.A., Aref’ev S.S., Bykova V.V., Masal’skii O.K., 2012. The 2008 Kultuk Earthquake with Mw=6.3 in the South of Baikal: Spatial-Temporal Analysis of Seismic Activation. Izvestiya, Physics of the Solid Earth 48, 594–614. https://doi.org/10.1134/S1069351312060031.

29. Mel’nikova V.I., Gileva N.A., Imaev V.S., Radziminovich Y.B., Tubanov T.A., 2013. Features of Seismic Activation of the Middle Baikal Region, 2008–2011. Doklady Earth Sciences 453, 1282–1287. https://doi.org/10.1134/S1028334X13120210.

30. Mel’nikova V.I., Gileva N.A., Radziminovich N.A., Masal’skii O.K., Chechel’nitskii V.V., 2010. Seismicity of the Baikal Rift Zone for the Digital Recording Period of Earthquake Observation (2001–2006). Seismic Instruments 46, 193–206. https://doi.org/10.3103/S0747923910020076.

31. Michetti A.M., Esposito R., Guerrieri L., Porfeido S., Serva L., Tatevossian R., Vittori E., Audermard F. et al., 2007. Intensity Scale ESI 2007. Memorie Descrittive Della Carta Geologica d’Italia. Vol. 74. SystemCart, Roma, 41 p.

32. Minchikovskii M.Ya., 1914. The Baikal Earthquakes in 1912. In: News of the PCSC. Vol. 6. Iss. 2. Publishing House of the Imperial Academy of Sciences, Saint Petersburg, p. 163–171 (in Russian) [Минчиковский М.Я. Байкальские землетрясения 1912 г. // Известия ПЦСК. СПб.: Типография Императорской академии наук, 1914. Т. 6. Вып. 2. С. 163–171].

33. Mizandrontsev I.B., 1982. "Hydrodynamic Concept" of N.M. Strakhov and Sedimentation in Baikal. In: V.A. Belova, B.F. Lut (Eds), Late Cenozoic History of Lakes in USSR. Nauka, Novosibirsk, p. 11–18 (in Russian) [Мизандронцев И.Б. «Гидродинамическая концепция» Н.М. Страхова и осадконакопление в Байкале // Позднекайнозойская история озер в СССР / Ред. В.А. Белова, Б.Ф. Лут. Новосибирск: Наука, 1982. С. 11–18].

34. Monecke K., Anselmetti F.S., Becker A., Sturm M., Giardini D., 2004. The Record of Historic Earthquakes in Lake Sediments of Central Switzerland. Tectonophysics 394 (1–2), 21–40. https://doi.org/10.1016/j.tecto.2004.07.053.

35. Morgenstern U., Ditchburn R.G., Vologina E.G., Sturm M., 2013. 32Si Dating of Sediments from Lake Baikal. Journal of Paleolimnology 50, 345–352. https://doi.org/10.1007/s10933-013-9729-3.

36. Nomade J., Chapron E., Desmet M., Reyss J.-L., Arnaud F., Lignier V., 2005. Reconstructing Historical Seismicity from Lake Sediments (Lake Laffrey, Western Alps, France). Terra Nova 17 (4), 350–357. https://doi.org/10.1111/j.1365-3121.2005.00620.x.

37. Och L.M., M・ler B., Voegelin A., Ulrich U., Gӧtlicher J., Steiniger R., Mangold S., Vologina E.G., Sturm M., 2012. New Insights into the Formation and Burial of Fe/Mn Accumulations in Lake Baikal Sediments. Chemical Geology 330–331, 244–259. https://doi.org/10.1016/j.chemgeo.2012.09.011.

38. Ohlendorf C., Sturm M., 2008. A Modified Method for Biogenic Silica Determination. Journal of Paleolimnology 39, 137–142. https://doi.org/10.1007/s10933-007-9100-7.

39. Radziminovich N.A., 2010. Focal Depths of Earthquakes in the Baikal Region: A Review. Izvestiya, Physics of the Solid Earth 46, 216–229. https://doi.org/10.1134/S1069351310030043.

40. Radziminovich Ya.B., Shchetnikov A.A., Vologina E.G., 2010. The "Methane Eruption" on Lake Baikal in 1912 as an Effect of a Strong Earthquake. Doklady Earth Sciences 432, 583–586. https://doi.org/10.1134/S1028334X10050077.

41. Schlupp A., Cisternas A., 2007. Source History of the 1905 Great Mongolian Earthquakes (Tsetserleg, Bolnay). Geophysical Journal International 169 (3), 1115–1131. https://doi.org/10.1111/j.1365-246X.2007.03323.x.

42. Schnellmann M., Anselmetti F.S., Giardini D., McKenzie J.A., Ward S.N., 2002. Prehistoric Earthquake History Revealed by Lacustrine Slump Deposits. Geology 30 (12), 1131–1134. https://doi.org/10.1130/0091-7613(2002)030<1131:PEHRBL>2.0.CO;2.

43. Sgibnev A.S., 1864. Activity Report of the Siberian Branch of the Imperial Russian Geographical Society for Year 1863. In: Notes of the Imperial Russian Geographical Society. Book 1. App. 1. V. Bezobrazov & Cー Publishing House, Saint Petersburg, p. 1–66 (in Russian) [Сгибнев А.С. Отчет о действиях Сибирского отдела Императорского русского географического общества за 1863 г. // Записки Императорского Русского географического общества. СПб.: Типография В. Безобразова и Компания, 1864. Кн. 1. Прил. 1. С. 1–66].

44. Shchetnikov A.A., Radziminovich Ya.B., Vologina E.G., Ufimtsev G.F., 2012. The Formation of Proval Bay as an Episode in the Development of the Baikal Rift Basin: A Case Study. Geomorphology 177–178, 1–16. https://doi.org/10.1016/j.geomorph.2012.07.023.

45. Solonenko V.P., Treskov A.A., 1960. The August 29, 1959 Middle Baikal Earthquake. Irkutsk Publishing House, Irkutsk, 36 p. (in Russian) [Солоненко В.П., Тресков А.А. Среднебайкальское землетрясение 29 августа 1959 года. Иркутск: Иркутское книжное изд-во, 1960. 36 с.].

46. Stockhecke M., Sturm M., Brunner I., Schmincke H.-U., Sumita M., Kipfer R., Cukur D., Kwiecien O., Anselmetti F.S., 2014. Sedimentary Evolution and Environmental History of Lake Van (Turkey) over the Past 600 000 Years. Sedimentology 61 (6), 1830–1861. https://doi.org/10.1111/sed.12118.

47. Sturm M., Matter A., 1978. Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In: A. Matter, M.E. Tucker (Eds), Modern and Ancient Lake Sediments. Special Publications of the International Association of Sedimentologists 2, p. 147–168. https://doi.org/10.1002/9781444303698.ch8.

48. Sturm M., Siegenthaler C., Pickrill R.A., 1995. Turbidites and Homogenites. A Conceptual Model of Flood and Slide Deposits. In: Abstract Book of the 16th European Conference of the International Association of Sedimentologists. IAS, Aix-les-Bains, France, p. 170–171.

49. Sturm M., Vologina E.G., Granina L., Flower R.J., Ryves D., Lees J.A., 1999. Spatial and Temporal Sedimentation Pattern of Lake Baikal. In: Abstracts Volume of the Second International Congress of Limno-Geology. Brest, France, p. T66–T67.

50. Sturm M., Vologina E.G., Levina O.V., Flower R.J., Ryves D., Lees J.A., 1998. Hemipelagic Sedimentation and Turbidites in the Active Tectonic Basin of Lake Baikal. In: Abstracts Volume of the INTAS Conference "Active Tectonic Continental Basins: Interaction between Structural and Sedimentary Processes". Gent, Belgium, p. 85–86.

51. Sturm M., Vologina E.G., Vorob’eva S.S., 2016. Holocene and Late Glacial Sedimentation near Steep Slopes in Southern Lake Baikal. Journal of Limnology 75 (1), 24–35. https://doi.org/10.4081/jlimnol.2015.1219.

52. Tulokhonov A.K., Andreev S.G., Batoev V.B., Tsydenova O.V., Khlystov O.M., 2006. Natural Microchronicle of Recent Events in the Basin of Lake Baikal. Russian Geology and Geophysics 47 (9), 1030–1034 (in Russian) [Тулоxонов А.К., Андpеев C.Г., Батоев В.Б., Цыденова О.В., Xлыcтов О.М. Пpиpодная микpолетопиcь новейшиx cобытий в баccейне озеpа Байкал // Геология и геофизика. 2006. Т. 47. № 9. С. 1043–1046].

53. Ulomov V.I., 2014. General Seismic Zoning of the Territory of Russian Federation: GSZ-2012. Seismic Instruments 50, 290–304. https://doi.org/10.3103/S0747923914040070.

54. Vandekerkhove E., Van Daele M., Praet N., Cnudde V., Haeussler P.J., De Batist M., 2020. Flood‐Triggered Versus Earthquake-Triggered Turbidites: A Sedimentological Study in Clastic Lake Sediments (Eklutna Lake, Alaska). Sedimentology 67 (1), 364–389. https://doi.org/10.1111/sed.12646.

55. Vologina E.G., Kalugin I.A., Osukhovskaya Yu.N., Sturm M., Ignatova N.V., Radziminovich Ya.B., Dar’in A.V., Kuzmin M.I., 2010. Sedimentation in Proval Bay (Lake Baikal) after Earthquake-Induced Subsidence of Part of the Selenga River Delta. Russian Geology and Geophysics 51 (12), 1275–1284. https://doi.org/10.1016/j.rgg.2010.11.008.

56. Vologina E.G., Kashik S.A., Sturm M., Vorob’eva S.S., Lomonosova T.K., Kalashnikova I.A., Khramtsova T.I., Toshchakov S.Yu., 2007. Results of Research into Holocene Sediments of the South and Central Basins of Lake Baikal (BDP-97 and Short Cores). Russian Geology and Geophysics 48 (4), 312–322. https://doi.org/10.1016/j.rgg.2007.03.002.

57. Vologina E.G., Sturm M., 2009. Types of Holocene Deposits and Regional Pattern of Sedimentation in Lake Baikal. Russian Geology and Geophysics 50 (8), 722–727. https://doi.org/10.1016/j.rgg.2008.12.012.

58. Vologina E.G., Sturm M., Radziminovich Ya.B., Vorob’eva S.S., Shchetnikov A.A., 2012. The 1912 Earthquake in South Baikal: Traces in Bottom Sediments and Gas Release into the Water Column. Russian Geology and Geophysics 53 (12), 1342–1350. https://doi.org/10.1016/j.rgg.2012.10.007.

59. Vologina E.G., Sturm M., Vorob’eva S.S., Granina L.Z., Toshchakov S.Yu., 2003. Character of Sedimentation in Lake Baikal in the Holocene. Russian Geology and Geophysics 44 (5), 388–402.

60. Voznesensky A., 1905. Earthquakes of June 26 and July 10. Eastern Review 153. Irkutsk, July 15, p. 2 (in Russian) [Вознесенский А. Землетрясения 26 июня и 10 июля // Восточное обозрение. Иркутск, 1905, 15 июля. № 153. С. 2].


Для цитирования:


Вологина Е.Г., Штурм М., Радзиминович Я.Б. СЛЕДЫ ВЫСОКОЙ СЕЙСМИЧЕСКОЙ АКТИВНОСТИ В ПОВЕРХНОСТНЫХ ОТЛОЖЕНИЯХ ОЗЕРА БАЙКАЛ, СИБИРЬ. Геодинамика и тектонофизика. 2021;12(3):544-562. https://doi.org/10.5800/GT-2021-12-3-0538

For citation:


Vologina E.G., Sturm M., Radziminovich Y.B. TRACES OF HIGH SEISMIC ACTIVITY IN THE UPPERMOST SEDIMENTS OF LAKE BAIKAL, SIBERIA. Geodynamics & Tectonophysics. 2021;12(3):544-562. https://doi.org/10.5800/GT-2021-12-3-0538

Просмотров: 178


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)