Preview

Geodynamics & Tectonophysics

Advanced search

KIMBERLITE-LIKE ROCKS OF THE URIK-IYA GRABEN, EASTERN SAYAN REGION: MINERAL COMPOSITION, GEOCHEMISTRY AND FORMATION CONDITIONS

https://doi.org/10.5800/GT-2020-11-4-0500

Abstract

The study of the Bol’shaya Tagna alkaline-carbonatite massif and adjacent areas was focused on the mineral and chemical compositions of minerals, the distribution of petrogenic and trace elements in pyroxene-free alkaline picrites in veins and dikes dated at the late Riphean (circa 645 Ma), and comparison with the Bushkanai kimberlite-picrite dike. Phenocrysts in the pyroxene-free picrites are represented by olivine (replaced with serpentine) and phlogopite; the bulk is formed by serpentine, phlogopite, monticellite, calcite, etc .; xenocrysts of pyrope and chrome diopside are absent. Phlogopite and Cr-spinel from the picrites are chemically similar to these minerals in kimberlites, but the evolution of the spinel compositions corresponds to the titanomagnetite trend; monticellite is depleted in forsterite (Mg2SiO4). The rocks contain strontianite, burbankite, titanium andradite, calcirtite and Mn-ilmenite, which are not typical of kimberlites, but are inherent in carbonate-bearing ultramafic lamprophyres, ayllikites. The pyroxene-free picrites have low contents (wt %) of SiO2  (28.4‒33.2), Al2O3  (3.2‒5.6), and Na2O (0.01‒0.05); relatively high contents of TiO2  (2.0‒3.3), and К2О (0.45‒1.33); varying contents of MgO (16.1‒24.1), СаО (12.9‒22.8), СО2  (1.1‒12.2), Ni (260‒850 ppm), and Cr (840‒2200 ppm); and Mg#=0.73‒0.80. The contents of Th, U, Nb, Ta, La, and Ce in the veins are approximately two orders higher than those in the primitive mantle; the spectra of trace elements differ from the spectra of the South African and Yakuian kimberlites. In the pyroxene-free picrites and the rocks of the Bushkanai dike, the Nb/U, Nb/Th, Th/Ce, La/Nb, and Zr/Nb ratios are similar to those in ocean island basalts (OIB) and thus give evidence of the leading contribution of the recycled component into the source melt. In experiments conducted to investigate melting of carbonated garnet lherzolite, the pyroxene-free alkaline picrites melted at 5–6 GPa.

About the Authors

V. B. Savel'eva
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Science
Russian Federation
128 Lermontov St, Irkutsk 664033


Yu. V. Danilova
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Science
Russian Federation
128 Lermontov St, Irkutsk 664033


E. P. Bazarova
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Science
Russian Federation
128 Lermontov St, Irkutsk 664033


B. S. Danilov
Institute of the Earth’s Crust, Siberian Branch of the Russian Academy of Science
Russian Federation
128 Lermontov St, Irkutsk 664033


References

1. Ashchepkov I., Zhmodik S., Belyanin D., Kiseleva O., Medvedev N., Travin A., Yudin D., Karmanov N., Downes H., 2020. Aillikites and Alkali Ultramafic Lamprophyres of the Beloziminsky Alkaline Ultrabasic-Carbonatite Massif: Possible Origin and Relations with Ore Deposits. Minerals 10 (5), 404. http://dx.doi.org/10.3390/min10050404.

2. Barnes S.J., Roeder P.L., 2001. The Range of Spinel Compositions in Terrestrial Mafic and Ultramafic Rocks. Journal of Petrology 42 (12), 2279–2302. https://doi.org/10.1093/petrology/42.12.2279.

3. Becker M., Le Roex A.P., 2006. Geochemistry of South African on- and off-Craton, Group I and Group II Kimberlites: Petrogenesis and Source Region Evolution. Journal of Petrology 47 (4), 673–703. http://dx.doi.org/10.1093/petrology/egi089.

4. Becker M., Le Roex A.P., Class C., 2007. Geochemistry and Petrogenesis of South African Transitional Kimberlites Located on and off the Kaapvaal Craton. South African Journal of Geology 110 (4), 631–646. http://dx.doi.org/10.2113/gssajg.110.4.631.

5. Bogatikov O.A., Kononova V.A., Nosova A.A., Kargin A.V., 2009. Polygenetic Sources of Kimberlites, Magma Composition, and Diamond Potential Exemplified by the East European and Siberian Cratons. Petrology 17 (6), 606–625. https://doi.org/10.1134/S0869591109060071.

6. Bogatikov O.A., Kononova V.A., Pervov V.A., Zhuravlev D.Z., 2001. Sources, Geodynamic Setting of Formation, and Diamond-Bearing Potential of Kimberlites from the Northern Margin of the Russian Plate: A Sr-Nd Isotopic and ICPMS Geochemical Study. Petrology 9 (3), 191–203 (in Russian)

7. Bovkun A.V., 2000. Mineralogy of Oxides from the Binding Material of Yakutian Kimberlites: Genetic and Applied Aspects. Brief PhD Thesis (Candidate of Geology and Mineralogy). Moscow, 22 p. (in Russian)

8. Chalapathi Rao N.V., 2005. A Petrological and Geochemical Reappraisal of the Mesoproterozoic Diamondiferous Majhgawan Pipe of Central India: Evidence for Transitional Kimberlite – Orangeite (Group II Kimberlite) – Lamproite Rock Type. Mineralogy and Petrology 84, 69–106. http://dx.doi.org/10.1007/s00710-004-0072-2.

9. Chernyshova E.A., 1991. Geochemistry and Petrology of Dike Rocks of the Lower Sayan Carbonatite Complex. Geochemistry 8, 1096–1110 (in Russian)

10. Condie K.C., 2003. Incompatible Element Ratios in Oceanic Basalts and Komatiites: Tracking Deep Mantle Sources and Continental Growth Rates with Time. Geochemistry, Geophysics, Geosystems 4 (1), 1–28. http://dx.doi.org/10.1029/2002GC000333.

11. Dongre A., Rao N.V., Viljoen K.S., Lehmann B., 2017. Petrology, Genesis and Geodynamic Implication of the Mesoproterozoic – Late Cretaceous Timmasamudram Kimberlite Cluster, Wajrakarur Field, Eastern Dharwar Craton, Southern India. Geoscience Frontiers 8 (3), 541–563. http://dx.doi.org/10.1016/j.gsf.2016.05.007.

12. Dongre A., Tappe S., 2019. Kimberlite and Carbonatite Dykes within the Premier Diatreme Root (Cullinan Diamond Mine, South Africa): New Insights to Mineralogical-Genetic Classifications and Magma CO2 Degassing. Lithos 338–339, 155–173. https://doi.org/10.1016/j.lithos.2019.04.020.

13. Dongre A.N., Viljoen K.S., Chalapathi Rao N.V., Gucsik A., 2016. Origin of Ti-Rich Garnets in the Groundmass of Wajrakarur Field Kimberlites, Southern India: Insights from Epma and Raman Spectroscopy. Mineralogy and Petrology 110, 295–307. http://dx.doi.org/10.1007/s00710-016-0428-4.

14. Doroshkevich A.G., Veksler I.V., Izbrodin I.A., Ripp G.S., Khromova E.A., Posokhov V.F., Travin A.V., Vladykin N.V., 2016. Stable Isotope Composition Ofminerals in the Belaya Zima Plutonic Complex, Russia: Implications for the Sources of the Parental Magma and Metasomatizing Fluids. Journal Asian Earth Science 116, 81–96. http://dx.doi.org/10.1016/j.jseaes.2015.11.011.

15. Egorov K.N., Kiselev A.I., Men’Shagin Y.V., Minaeva Y.A., 2010. Lamproite and Kimberlite of the Sayany Area: Composition, Sources, and Diamond Potential. Doklady Earth Sciences 435 (2), 1670–1675. https://doi.org/10.1134/S1028334X10120251.

16. Frolov A.A., Belov S.V., 1999. Complex Carbonatite Deposits of the Zima Ore Region (Eastern Sayan, Russia). Geology of Ore Deposits 41 (2), 109–130 (in Russian)

17. Frolov A.A., Lapin A.V., Tolstov A.V., Zinchuk N.N., Belov S.V., Burmistrov A.A., 2005. Carbonatites and Kimberlites (Interrelations, Metallogeny, Forecast). NIA-Priroda, Moscow, 540 p. (in Russian)

18. Gladkochub D.P., Mazukabzov A.M., Stanevich A.M., Donskaya T.V., Motova Z.L., Vanin V.A., 2014. Precambrian Sedimentation in the Urik-Iya Graben, Southern Siberian Craton: Main Stages and Tectonic Settings. Geotectonics 48 (5), 359–370. https://doi.org/10.1134/S0016852114050033.

19. Goloburdina M.N., 2017. On the Issue of Terminology and Classification of Kimberlites and Lamproites. Regional Geology and Metallogeny 72, 55–64 (in Russian)

20. Gudfinnsson G.H., Presnall D.C., 2005. Continuous Gradations among Primary Carbonatitic, Kimberlitic, Basaltic, Picritic, and Komatiitic Melts in Equilibrium with Garnet Lherzolite at 3–8 GPa. Journal of Petrology 46 (8), 1645–1659. http://dx.doi.org/10.1093/petrology/egi029.

21. Khromova E.A., Doroshkevich A.G., Izbrodin I.A., 2020. Geochemical and Sr–Nd–Pb Isotopic Characteristics of Alkaline Rocks and Carbonatites of the Beloziminsky Massif (Eastern Sayan). Geosphere Research 1, 33–55 (in Russian) http://dx.doi.org/10.17223/25421379/14/3.

22. Kostrovitsky S.I., Yakovlev D.A., Morikiyo T., Serov I.V., Amirzhanov A.A., 2007. Isotope-Geochemical Systematics of Kimberlites and Related Rocks from the Siberian Platform. Russian Geology and Geophysics 48 (3), 272–290. https://doi.org/10.1016/j.rgg.2007.02.011.

23. Kuzmin M.I., Yarmolyuk V.V., 2014. Mantle Plumes of Central Asia (Northeast Asia) and Their Role in Forming Endogenous Deposits. Russian Geology and Geophysics 55 (2), 120–143. https://doi.org/10.1016/j.rgg.2014.01.002.

24. Le Maitre R.W. (Ed.), 2005. Igneous Rocks: A Classification and Glossary of Terms. Cambridge University Press, 256 p. Le Roex A.P., Bell D.R., Davis P., 2003. Petrogenesis of Group I Kimberlites from Kimberley, South Africa: Evidence from Bulk-Rock Geochemistry. Journal of Petrology 44 (12), 2261–2286. http://dx.doi.org/10.1093/petrology/egg077.

25. Minaeva Yu.A., Egorov K.N., 2008. Mineralogical and Petrographic Features of a Kimberlite-Picrite Dike in the Northwestern Part of the Urik-Iya Graben (Eastern Sayan Region). Geology of Ore Deposits 3, 23–39 (in Russian)

26. Mitchell R.H., 1995. Kimberlites, Orangeites and Related Rocks. New York: Plenium Press, 410 p. http://dx.doi.org/10.1007/978-1-4615-1993-5.

27. Odintsov M.M., Tverdokhlebov V.A., Vladimirov B.M., Ilyukhina A.V., Kolesnikova T.P., Konev A.A., 1962. Structure, Volcanism and Diamond Content of the Irkutsk Amphitheater. Publishing House of the USSR Academy of Science, Moscow, 180 p. (in Russian)

28. Petrographic Code of Russia: Magmatic, Metamorphic, Metasomatic and Impact Formations, 2008. VSEGEI Publishing House, Saint Petersburg, 200 p. (in Russian)

29. Pokhilenko N.P., Afanasiev V.P., Sobolev N.V., Egorov K.N., Smelov A.P., Kostrovitsky S.I., 2012. Stages of Kimberlite Magmatism of the Siberian Platform and Their Productivity: Patterns of Formation and Features of Forecasting Primary Deposits of Diamonds of Various Genetic Types, and New Promising Regions. In: Problems of Minerageny of Russia. Geophysical Center RAS, Moscow, 265–286 (in Russian)

30. Pokhilenko N.P., Agashev A.M., Litasov K.D., Pokhilenko L.N., 2015. Carbonatite Metasomatism of Peridotite Lithospheric Mantle: Implications for Diamond Formation and Carbonatite-Kimberlite Magmatism. Russian Geology and Geophysics 56 (1–2), 280–295. https://doi.org/10.1016/j.rgg.2015.01.020.

31. Pozharitskaya L.K., Samoilov V.S., 1972. Petrology, Mineralogy and Geochemistry of Carbonatites in Eastern Siberia. Nauka, Moscow, 265 p. (in Russian)

32. Roeder P.L., Schulze D.J., 2008. Crystallization of Groundmass Spinel in Kimberlite. Journal of Petrology 49 (8), 1473–1495. http://dx.doi.org/10.1093/petrology/egn034.

33. Salnikova E.B., Chakhmouradian A.R., Stifeeva M.V., Reguir E.P., Kotov A.B., Gritsenko Y.D., Nikiforov A.V., 2019. Calcic Garnets as a Geochronological and Petrogenetic Tool Applicable to a Wide Variety of Rocks. Lithos 338–339, 141–154. https://doi.org/10.1016/j.lithos.2019.03.032.

34. Scott Smith B.H., Nowicki T.E., Russel J.K., Webb K.J., Mitchell R.H., Hetman C.M., Robey J.V., 2018. A Glossary of Kimberlite and Related Terms. Part 1. Scott-Smith Petrology Inc., North Vancouver, 144 p.

35. Sekerin A.P., Men’shagin Yu.V., Lashchenov V.A., 1995. The Sayan Province of High–Potassium Alkaline Rocks and Lamproites. Doklady Earth Sciences 342 (1), 82–86 (in Russian)

36. Smedley P.L., 1988. Trace Element and Isotopic Variations in Scottish and Irish Dinantian Volcanism: Evidence for an OIB- Like Mantle Source. Journal of Petrology 29(2), 413–443. https://doi.org/10.1093/petrology/29.2.413.

37. Sun S.-S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications 42 (1), 313–345. https://doi.org/10.1144/gsl.sp.1989.042.01.19.

38. Tappe S., Brand N.B., Stracke A., van Acken D., Liu C.-Z., Strauss H., Wu F.-Y., Luguet A., Mitchell R.H., 2017. Plates or Plumes in the Origin of Kimberlites: U/Pb Perovskite and Sr-Nd-Hf-Os-C-O Isotope Constraints from the Superior Craton (Canada). Chemical Geology 455, 57–83. http://dx.doi.org/10.1016/j.chemgeo.2016.08.019.

39. Tappe S., Foley S.F., Jenner G.A., Kjarsgaard B.A., 2005. Integrating Ultramafic Lamprophyres into the IUGS Classification of Igneous Rocks: Rationale and Implications. Journal of Petrology 46 (9), 1893–1900. http://dx.doi.org/10.1093/petrology/egi039.

40. Tappe S., Kjarsgaard B.A., Kurszlaukis S., Nowell G.M., Phillips D., 2014. Petrology and Nd-Hf Isotope Geochemistry of the Neoproterozoic Amon Kimberlite Sills, Baffin Island (Canada): Evidence for Deep Mantle Magmatic Activity Linked to Supercontinent Cycles. Journal of Petrology 55 (10), 2003–2042. http://dx.doi.org/10.1093/petrology/egu048.

41. Vladykin N.V., 2016. Genesis and Crystallization of Ultramafic Alkaline Carbonatite Magmas of Siberia: Ore Potential, Mantle Sources, and Relationship with Plume Activity. Russian Geology and Geophysics 57 (5), 889–905 (in Russian) http://dx.doi.org/10.15372/GiG20160505.

42. Yarmolyuk V.V., Kovalenko V.I., 2003. Deep Geodynamics and Mantle Plumes: Their Role in the Formation of the Central Asian Fold Belt. Petrology 11 (6) 504–531.

43. Yarmolyuk V.V., Kovalenko V.I., Sal’nikova E.B., Nikiforov A.V., Kotov A.B., Vladykin N.V., 2005. Late Riphean Riftogenesis and Laurasia Break-Up: Data of Geochronological Studies of Ultrabasic Alkaline Complexes in the Southern Framework of the Siberian Craton. Doklady Earth Sciences 404 (3), 400–406 (in Russian)


Supplementary files

1. Savel_eva et al_suppl.xlsx
Subject
Type Исследовательские инструменты
Download (104KB)    
Indexing metadata ▾

Review

For citations:


Savel'eva V.B., Danilova Yu.V., Bazarova E.P., Danilov B.S. KIMBERLITE-LIKE ROCKS OF THE URIK-IYA GRABEN, EASTERN SAYAN REGION: MINERAL COMPOSITION, GEOCHEMISTRY AND FORMATION CONDITIONS. Geodynamics & Tectonophysics. 2020;11(4):678-696. (In Russ.) https://doi.org/10.5800/GT-2020-11-4-0500

Views: 899


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)