Preview

Geodynamics & Tectonophysics

Advanced search

Inhomogeneous structure of magnetic layer of the Kuril Island Arc

https://doi.org/10.5800/GT-2020-11-3-0492

Abstract

An innovative technology of anomalous magnetic field inversion was applied to construct 2D models of the magnetic layer using three profiles crossing the southern, central and northern parts of the Kuril Island Arc. In the frontal area of the northern and southern parts, a zone of increased effective magnetization is clearly distinguished. In the central part of the island arc, increased magnetization is much less pronounced. Anomalous zones of positive effective magnetization have a deep part, the so-called "serpentinite wedge". The inhomogeneous lateral structure of the magnetic layer of the Kuril Island Arc suggests differences in the fluid regime and is reflected in the distribution of modern seismicity.

 

About the Authors

N. A. Palshin
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

Nikolay A. Palshin.
36 Nahimovskiy Ave, Moscow 117997.



A. N. Ivanenko
Shirshov Institute of Oceanology, Russian Academy of Sciences
Russian Federation

36 Nahimovskiy Ave, Moscow 117997.



D. A. Alekseev
Shirshov Institute of Oceanology, Russian Academy of Sciences; Moscow Institute of Physics and Technology; Schmidt Institute of Physics of the Earth, Russian Academy of Sciences
Russian Federation

36 Nahimovskiy Ave, Moscow 117997; 9 Institutskiy Ln, Moscow Reg, Dolgoprudny 141701; 10/1 Bolshaya Gruzinskaya St, Moscow 123242.



References

1. Abers G.A., Van Keken P.E., Hacker B.R., 2017. The Cold and Relatively Dry Nature of Mantle Forearcs in Subduction Zones. Nature Geoscience 10, 333–337. http://doi.org//10.1038/NGEO2922.

2. Araya Vargas J.A., 2016. Large-Scale Distribution of Fluids in the Subduction Zone of Northern Chile – Constraints from Magnetotelluric Monitoring. PhD Thesis (Dr. Rer. Nat.). Berlin, 189 p. http://dx.doi.org/10.17169/refubium-6133.

3. Baranov B.V., Ivashchenko A.I., Dozorova K.A., 2015. The Great 2006 and 2007 Kuril Earthquakes, Forearc Segmentation and Seismic Activity of the Central Kuril Island Region. Pure and Applied Geophysics 172, 3509–3535. http://doi.org//10.1007/s00024-015-1120-z.

4. Baranov B.V., Lobkovsky L.I., Dozorova K.A., 2016. Extension in the Frontal Part of the Central Kuril and Migration of the Trough. Reports of the Academy of Sciences 469 (3), 347–350 (in Russian) https://doi.org/10.7868/S0869565216210180.

5. Blakely R., Brocher T., Wells R., 2005. Subduction-Zone Magnetic Anomalies and Implications for Hydrated Forearc Mantle. Geology 33 (6), 445–448. https://doi.org/10.1130/G21447.1.

6. Blanco-Quintero I.F., Proenza J.A., García-Casco A., Tauler Е., Galí S., 2011. Serpentinites and Serpentinites within a Fossil Subduction Channel: La Corea Mélange, Eastern Cuba. Geologica Acta 9 (3–4), 389–405. http://doi.org//10.1344/105.000001662.

7. Bulletin of the International Seismological Centre Catalog Search, 2017. Available from: http://www.isc.ac.uk.

8. Carlson R.L., Miller D.J., 2003. Mantle Wedge Water Contents Estimated from Seismic Velocities in Partially Serpentinized Peridotites. Geophysical Research Letters 30 (5), 1250. http://doi.org//10.1029/2002GL016600.

9. Dolgal’ A.S., Ivanenko A.N., Novikova P.N., Rashidov V.A., 2017. Serpentinites and Serpentinites within a Fossil Subduction Application of Modern Interpretive Geomagnetic Technologies for Studying Set Guyot (Markus-Necker mountains, Pacific Ocean). Geoinformatics 4, 38–47 (in Russian)

10. Fedotov S.A., 1965. Regularities in the Distribution of Strong Earthquakes in Kamchatka, the Kuril Islands and Northeastern Japan. Proceedings of the Institute of the Physics of the Earth of the USSR Academy of Science. Iss. 36. Nauka, Moscow, 66–93 (in Russian)

11. Fedotov S.A., 1968. On the Seismic Cycle, the Possibility of Quantitative Seismic Zoning and Long-Term Seismicity Forecasting. In: Seismic Zoning of the USSR. Nauka, Moscow, p. 121–150 (in Russian)

12. Gasc J., Hilairetb N., Ferrand Yu.T., Schubnel A., Wang, Y., 2017. Faulting of Natural Serpentinite: Implications for Intermediate-Depth Seismicity. Earth Planetary Science Letters 474, 138–147. https://doi.org/10.1016/j.epsl.2017.06.016.

13. Gorodnitskiy A.M., Brusilovskiy Yu.V., Ivanenko A.N., Filin A.M., Shishkina N.A., 2013. New Methods for Processing and Interpreting Marine Magnetic Anomalies: Application to Structure, Oil and Gas Exploration, Kuril Forearc, Barents and Caspian Seas. Geoscience Frontiers 4 (1), 73–85. https://doi.org/10.1016/j.gsf.2012.06.002.

14. Gorodnitskiy A.M., Brusilovsky Yu.V., Ivanenko Yu.V., Popov K.V., Shishkina N.A., 2017. Nature of Magnetic Anomalies in Subduction Zones. Physics of the Earth 5, 185–192 (in Russian) https://doi.org/10.7868/S0002333717050052.

15. Hayes G., 2018. Slab2 – A Comprehensive Subduction Zone Geometry Model: U.S. Geological Survey Data Release. https://doi.org/10.5066/F7PV6JNV.

16. Hyndman R.D., Peacock S.M., 2003. Serpentinization of the Forearc Mantle. Earth and Planetary Science Letters 212 (3–4), 417–432. http://doi.org/10.1016/S0012-821X(03)00263-2.

17. Kapinos G., Montahaei M., Meqbel N., Brasse H., 2016. Three-Dimensional Electrical Resistivity Image of the South-Central Chilean Subduction Zone. Tectonophysics 666, 76–89. http://doi.org/10.1016/j.tecto.2015.10.016.

18. Kerrick D., 2002. Serpentinite Seduction. Science 298 (5597), 1344–1345. http://doi.org/10.1126/science.298.5597.1344.

19. Key K., Constable S., Matsuno T., Evans R.L., Myer D., 2012. Electromagnetic Detection of Plate Hydration Due to Bending Faults at the Middle America Trench. Earth and Planetary Science Letters 351–352, 45–53. http://doi.org/10.1016/j.epsl.2012.07.020.

20. Kogiso T., Omori S., Maruyama S., 2009. Magma Genesis beneath Northeast Japan Arc: A New Perspective on Subduction Zone Magmatism. Gondwana Research 16 (3–4), 446–457. http://doi.org/10.1016/j.gr.2009.05.006.

21. Kulinich R.G., Karp B.Ya., Baranov B.V., Lelikov E.P., Karnaukh V.N., Valitov M.G., Nikolaev S.M., Kolpashchikova T.N., Tsoi I.B., 2007. On the Structural and Geological Characteristics of the "Seismic Gap" in the Central Part of the Kuril Island Ridge. Pacific Geology 26 (1), 5–19 (in Russian)

22. Kulinich R.G., Valitov M.G., Proshkina Z.N., 2012. Geophysical Fields, Block Structure and Seismic Activity of the Central Kuriles. Pacific Geology 31 (6), 35–43 (in Russian)

23. Kulinich R.G., Valitov M.G., Proshkina Z.N., 2015. Comparative Analysis of Seismic and Density Models of the Crust in the Central Kuriles. Pacific Geology 34 (6), 45–56 (in Russian)

24. Last B.J., Kubik K., 1983. Compact Gravity Inversion. Geophysics 48, 713–72, https://doi.org/10.1190/1.1441501.

25. Li C.-F, Lu Y., Wang J., 2017. A Global Reference Model of Curie-Point Depths Based on EMAG2. Scientific Reports 7, 45129. http://doi.org/10.1038/srep45129.

26. Lobkovsky L.I., Baranov B.V., 1984. Keyboard Model of Strong Earthquakes on Island Arcs and Active Continental Margins. Reports of the USSR Academy of Sciences 275 (4), 843–847 (in Russian)

27. Lobkovsky L.I., Vladimirova I.S., Gabsatarov Yu.V., Garagash I.A., Baranov B.V., Steblov G.M., 2017. Postseismic Movements after the 2006–2007 Simushir Earthquakes at Various Stages of the Seismic Cycle. Reports of the Academy of Sciences 473 (3), 359–364 (in Russian) http://doi.org/10.7868/S0869565217090225.

28. Maekawa H., Yamanoto K., Teruaki I., Ueno T., Osada Y., 2001. Serpentinite Sea Mounts and Hydrated Mantle Wedge in the Izu-Bonin and Mariana Forearc Regions. Bulletin of Earthquake Research Institute 76, 355–366.

29. Meyer B., Saltus R., Chulliat A., 2017. EMAG2: Earth Magnetic Anomaly Grid (2-Arc-Minute Resolution). Version 3. National Centers for Environmental Information, NOAA. http://doi.org/10.7289/V5H70CVX.

30. Palshin N.A., Alekseev D.A., 2017. Features of Deep Electrical Conductivity in the Transition Zone from the Pacific Ocean to Eurasia. Physics of the Earth 3, 107–123 (in Russian) https://doi.org/10.7868/S0002333717020107.

31. Popov K.V., Bazylev B.A., Shcherbakov V.P., Tsel’movich V.A., Kononkova N.N., 2015. Thermomagnetic Analysis of Ultramafic Rocks: A Case Study of Dunite from the Pekul’ney Complex, Chukotka, NE Russia. Russian Journal of Earth Sciences 15, ES1003. http://doi.org/10.2205/2015ES000547.

32. Portniaguine O., Zhdanov M.S., 2002. 3-D Magnetic Inversion with Data Compression and Image Focusing. Geophysics 67 (5), 1532–1541. http://doi.org/10.1190/1.1512749.

33. Purucker M.E., Clark D.A., 2011. Mapping and Interpretation of the Lithospheric Magnetic Field. In: M. Mandea, M. Korte (Eds), Geomagnetic Observations and Models. P. 311–337. https://doi.org/10.1007/978-90-481-9858-0_13.

34. Rajaram M., 2007. Depth to Curie Temperature. In: D. Gubbins, E. Herrero-Bervera (Eds), Encyclopedia of Geomagnetism and Paleomagnetism. P. 157–159. http://doi.org/10.1007/978-1-4020-4423-6.

35. Raleigh C.B., Paterson M.S., 1965. Experimental Deformation of Serpentinite and Its Tectonic Implications. Journal of Geophysical Research 70 (16), 3965–3985. http://doi.org/10.1029/JZ070i016p03965.

36. Rupke L.H., Morgan J.P., Hort M., Connolly J.A.D., 2004. Serpentine and the Subduction Zone Water Cycle. Earth and Planetary Science Letters 223 (1–2), 17–34. http://doi.org/10.1016/j.epsl.2004.04.018.

37. Sykes L., 1971. Aftershock Zones of Great Earthquakes, Seismicity Gaps and Earthquake Prediction for Alaska and the Aleutians. Journal of Geophysical Research 76 (32), 8021–8041. http://doi.org/10.1029/JB076i032p08021.

38. Taira A., 2001. Tectonic Evolution of the Japanese Island Acr System. Annual Review of Earth Planetary Science 29, 109–134. https://doi.org/10.1146/annurev.earth.29.1.109.

39. Zhdanov M.S., 2002. Geophysical Inverse Theory and Regularization Problems. Methods on Geochemistry and Geophysics. Vol. 36. Elsevier Science, Amsterdam, 633 p.


Review

For citations:


Palshin N.A., Ivanenko A.N., Alekseev D.A. Inhomogeneous structure of magnetic layer of the Kuril Island Arc. Geodynamics & Tectonophysics. 2020;11(3):583-594. (In Russ.) https://doi.org/10.5800/GT-2020-11-3-0492

Views: 787


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)