Preview

Геодинамика и тектонофизика

Расширенный поиск

Позднечетвертичные смещения вдоль Сарминского участка Приморского разлома по данным георадиолокации (Байкальский рифт)

https://doi.org/10.5800/GT-2020-11-3-0490

Полный текст:

Аннотация

Рассмотрены результаты георадиолокационных исследований активизированного в раннем голоцене участка Приморского разлома в районе р. Сарма между населенными пунктами Шида и Курма. Целью данной работы является реконструкция вертикальных амплитуд смещений и углов падения разрывов вдоль активизированного в позднечетвертичное время участка Приморского разлома для уточнения его кинематического типа и максимальной магнитуды землетрясения, которое может иметь место в зоне одной из крупнейших структур Байкальского рифта.
Работы выполнялись георадаром ОКО-2 с экранированной антенной АБ-250М и АБДЛ-Тритон. В дополнение к основному методу использовались морфоструктурные и тектонофизические методы. В результате выполненных работ на основе интерпретации данных геофизических исследований и дешифрирования спутниковых снимков, доступных через Web-сервисы, были откартированы разрывные нарушения, ассоциированные с палеосейсмодислокацией Сарма. Общая протяженность откартированных разрывов составила не менее 14 км. Полученные на основе георадиолокационных данных одноактные вертикальные смещения по сейсморазрыву имеют сбросовую кинематику и изменяются с ЮЗ на СВ с 4.4 до 7.7 м. Магнитуды палеоземлетрясения, рассчитанные по максимальному вертикальному смещению, равны Mw=7.2 и Мs=7.4, что дает право предполагать более значительное по силе землетрясение, которое может иметь место в зоне Приморского разлома, чем считалось ранее.
 

Об авторах

И. А. Денисенко
Институт земной коры СО РАН
Россия
664033, Иркутск, ул. Лермонтова, 128. 


О. В. Лунина
Институт земной коры СО РАН
Россия
664033, Иркутск, ул. Лермонтова, 128. 


Список литературы

1. Bucknam R.C., Anderson R.E., 1979. Estimation of Fault Scarp Ages from a Scarp-Height-Slope-Angle Relationship. Geology 7 (1), 11–14.

2. Caskey S.J., Wesnousky S.G., Zgang P., Slemmons D.B., 1996. Surface Faulting of the 1954 Fairview Peak (Ms 7.2) and Dixie Valley (Ms 6.8) Earthquakes, Central Nevada. Bulletin of the Seismological Society of America 86 (3), 761–787.

3. Черемных А.В. Разломы Центрального Прибайкалья: результаты структурно-парагенетического анализа // Вестник СПбГУ. 2015. Сер. 7. Вып. 2. С. 59–72.

4. Chipizubov A.V., Smekalin O.P., Imaev V.S., 2015. Paleoseismic Dislocations and Paleo-Earthquakes of the Primorsky Fault Zone (Lake Baikal). Problems of Engineering Seismology 42 (3), 5–19 (in Russian)

5. O.P., Imaev V.S., 2019. Seismotectonic Studies of Sarma Paleo-Seismodislocations (Western Shore of Lake Baikal). Problems of Engineering Seismology 46 (1), 5–19 (in Russian) https://doi.org/10.21455/VIS2019.1-1.

6. Daniels D.J., 1996. Surface-Penetrating Radar. Electronics & Communication Engineering Journal 8 (4), 165–182. https://doi.org/10.1049/ecej:19960402.

7. Davis J.L., Annan A.P., 1989. Ground Penetrating Radar for High-Resolution Mapping of Soil and Stratigraphy. Geophysical Prospecting 37 (5), 531—551. https://doi.org/10.1111/j.1365-2478.1989.tb02221.x.

8. Gladkov A.S., Lunina O.V., 2015. Georadar Surveys of the Sarma Paleo-seismodislocation (Southern Areas of East Siberia). In: Geodynamic Processes and Natural Disasters. The Experience of Neftegorsk. Proceedings of All-Russia Scientific Conference with International Participation (May 26–30, 2015). Dal’nauka Publishing House, Yuzhno-Sakhalinsk, 73–74 (in Russian)

9. Gusev G.S., Imaeva L.P., 2014. Modern Tectonic (Geodynamic) Activity of the Territory of Russia. Subsoil Exploration and Protection 12, 23–29 (in Russian)

10. Lunina O.V., 2001. Influence of the Stress State of the Lithosphere on the Ratio of the Parameters of Seismogenic Ruptures and Magnitudes of Earthquakes. Geology and Geophysics 42 (9) 1389–1398 (in Russian)

11. Lunina O.V., 2016. The Digital Map of the Pliocene‐Quaternary Crustal Faults in the Southern East Siberia and the Adjacent Northern Mongolia. Geodynamics & Tectonophysics 7 (3), 407–434 (in Russian) https://doi.org/10.5800/GT-2016-7-3-0215.

12. Lunina O.V., Gladkov A.S., Cheremnykh A.V., 2002. Fracturing in the Primorsky Fault Zone (Baikal Rift System). Geology and Geophysics 43 (5), 446–455 (in Russian)

13. Makarov S.A., 1997. Geomorphological Processes of Priolkhonie in the Holocene. Geography and Natural Resources 1, 77–85 (in Russian)

14. Makarov S.A., Ryashchenko T.G., Akulova V.V., 2000. Geoecological Analysis of the Territory of Distribution of Natural-Technogenic Processes in the Neogene – Quaternary Sediments of the Baikal Region. Nauka, Novosibirsk, 160 p. (in Russian)

15. Mats V.D., 2015. Baikal Rift: Pliocene (Miocene) – Quaternary Episode or Product of Long Development from the Late Cretaceous under the Influence of Various Tectonic Factors. Review of Views. Geodynamics & Tectonophysics 6 (4) 467–489 (in Russian) https://doi.org/10.5800/GT-2015-6-4-0190.

16. McCalpin J.P. (Ed.), 2009. Paleoseismology. Second Edition. Academic Press, 629 p.

17. Obukhov S.P., Ruzhich V.V., 1971. Structure and Position of the Primorsky Strike-Slip Fault with Normal Component in the System of the Main Fault of West Pribaikalie. In: Geology and Minerals of East Siberia. Institute of the Earth’s Crust SB RAS, Irkutsk, 65–68 (in Russian)

18. OKO-2 Radio-Technical Device of Subsurface Sounding, 2009. Technical Description. User Manual. Logic Systems, Moscow, 94 p. (in Russian)

19. Sherman S.I., Dneprovsky Yu.I., 1989. Stress Fields of the Earth’s Crust and Geological and Structural Methods for Their Study. Nauka, Novosibirsk, 158 p. (in Russian)

20. Sherman S.I., Seminsky K.Zh., Bornyakov S.A., Adamovich A.N., Lobatskaya R.M., Lysak S.V., Levi K.G., 1992. Faulting in the Lithosphere. Extension Zones. Nauka, Novosibirsk, 227 p. (in Russian)

21. Smekalin O.P., Chipizubov A.V., Imaev V.S., 2010. Paleoearthquakes in the Baikal Region: Methods and Results of Dating. Geotectonics 2, 77–96 (in Russian)

22. Solonenko V.P. (Ed.), 1968. Seismotectonics and Seismicity of the Rift System of Pribaikalie. Nauka, Moscow, 220 p. (in Russian)

23. Starovoitov A.V., 2008. Interpretation of GPR Data. Textbook. MSU Publishing House, Moscow, 192 p. (in Russian)

24. Vladov V.L., Starovoytov A.V., 2004. Introduction to Ground- Penetrating Radar. MSU Publishing House, Moscow, 153 p. (in Russian)

25. Vladov V.L., Sudakova M.S., 2017. GPR. From Physical Fundamentals to Promising Areas. Textbook. GEOS, Moscow, 240 p. (in Russian)

26. Wells D.L., Coppersmith K.J., 1994. New Empirical Relationships among Magnitude, Rupture Length, Rupture Width, Rupture Area, and Surface Displacement. Bulletin of the Seismological Society of America 84 (4), 974–1002.

27. Wheeler R.L., 1989. Persistent Segment Boundaries on Basin-Range Normal Faults. In: D.P. Schwartz, R.H. Sibson. (Eds), Fault Segmentation and Controls of Rupture Initiation and Termination. U.S. Geological Survey Open-File Report 89–315, 432–444.


Для цитирования:


Денисенко И.А., Лунина О.В. Позднечетвертичные смещения вдоль Сарминского участка Приморского разлома по данным георадиолокации (Байкальский рифт). Геодинамика и тектонофизика. 2020;11(3):548-565. https://doi.org/10.5800/GT-2020-11-3-0490

For citation:


Denisenko I.A., Lunina O.V. Late Quarternary displacements along the Sarma segment of the Primorsky fault based on gpr survey data (Baikal rift). Geodynamics & Tectonophysics. 2020;11(3):548-565. (In Russ.) https://doi.org/10.5800/GT-2020-11-3-0490

Просмотров: 185


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)