Preview

Геодинамика и тектонофизика

Расширенный поиск

Особенности структурообразования в процессе развития литосферы Аденского залива (физическое моделирование)

https://doi.org/10.5800/GT-2020-11-3-0489

Полный текст:

Аннотация

Рассмотрены особенности тектонического строения бассейна Аденского залива, включающего три различные провинции: восточную, центральную и западную. Различие в морфоструктурной сегментации спредингового хребта Аденского залива отражает разный геодинамический режим формирования и развития этих провинций.
С помощью физического моделирования исследованы механизмы сегментации зоны спрединга в западной, центральной и восточной части Аденского залива, а также условия формирования краевого плато и о. Сокотра. В экспериментах плита с упругопластическими свойствами, лежащая на жидком основании, подвергалась нормальному или косому растяжению. Участки плиты, имитирующие в модели континентальную или океаническую литосферу, имели разную толщину. В них в соответствии с природными обстановками задавались различные неоднородности: разрезы, линейные ослабленные зоны (зоны прогрева рифта) и др. Результаты экспериментов показали, что характер морфоструктурной сегментации оси спрединга в районе Аденского залива зависит от степени прогретости мантии и толщины литосферы, связанной с разной удаленностью от Афарского плюма и локальными термическими аномалиями, от косости спрединга и существования структурных неоднородностей с повышенной прочностью литосферы, обусловленных в данном случае наличием серии мезозойских грабенов на дораскольном фундаменте. Чем меньше мощность литосферы, тем меньше размеры сегментов; чем острее угол, тем более выражена сегментация. Исследование условий соединения континентального рифта Аденского залива с рифтовой зоной спредингового хребта Карлсберг показало, что, по всей видимости, рифты развивались посредством их продвижения навстречу друг другу. Эксперименты показали, что в случае «резкой» границы между блоками разной толщины, вероятнее всего, возникнет сдвиговая зона. Эта ситуация применима, например, к разлому Алула-Фартак или к разлому Оуэн. В случае менее «резкой» границы часто формируются структуры перекрытия, представляющие собой микроплиты, или микроблоки, заключенные между двумя рифтами, один из которых в дальнейшем отмирает, а другой развивается в спрединговый хребет. Таким микроблоком, видимо, является краевое плато и о. Сокотра. Как показало моделирование, при формировании плато и о. Сокотра важную роль играет встречное продвижение двух рифтов, причем существенное значение имеет первоначальная геометрия рифтовых зон и их разнос относительно друг друга.
 

Об авторах

Е. П. Дубинин
Музей землеведения Московского государственного университета им. М.В. Ломоносова
Россия
119991, Москва, Ленинские горы, 1. 


А. Л. Грохольский
Музей землеведения Московского государственного университета им. М.В. Ломоносова
Россия
119991, Москва, Ленинские горы, 1. 


Список литературы

1. Agostini A., Bonini M., Corti G., Sani F., Mazzarini F., 2011. Fault Architecture in the Main Ethiopian Rift and Comparison with Experimental Models: Implications for Rift Evolution and Nubia–Somalia Kinematics. Earth and Planetary Science Letters 301 (3–4), 479–492. https://doi.org/10.1016/j.epsl.2010.11.024.

2. Agostini A., Corti G., Zeoli A., Mulugeta G., 2009. Evolution, Pattern, and Partitioning of Deformation during Oblique Continental Rifting: Inferences from Lithospheric-Scalecentrifuge Models. Geochemistry, Geophysics, Geosystems 10 (11), 23. https://doi.org/10.1029/2009GC002676.

3. Allemand P., Brun J.-P., 1991. Width of Continental Rifts and Rtheological Layering of the Lithosphere. In: P.R. Cobbold (Ed.), Experimental and Numerical Modelling of Continental Deformation. Tectonophysics 188 (1–2), 63–69. https://doi.org/10.1016/0040-1951(91)90314-I.

4. Autin J., Bellahsen N., Husson L., Beslier M.-O., Leroy S., d’ Acremont E., 2010. Analog Models of Oblique Rifting in a Cold Lithosphere. Tectonics 29 (6), TC6016. http://dx.doi.org/10.1029/2010TC002671.

5. Autin J., Bellahsen N., Leroy S., Husson L., Beslier M.-O., d’ Acremont E., 2013. The Role of Structural Inheritance in Oblique Rifting: Insights from Analogue Models and Application to the Gulf of Aden. Tectonophysics 607, 51–64. https://doi.org/10.1016/j.tecto.2013.05.041.

6. Bellahsen N., Husson L., Autin J., Leroy S., d’Acremont E., 2013a. The Effect of Thermal Weakening and Buoyancy Forces on Rift Localization: Field Evidences from the Gulf of Aden Oblique Rifting. Tectonophysics 607, 80–97. https://doi.org/10.1016/j.tecto.2013.05.042.

7. Bellahsen N., Leroy S., Autin J., Razin P., d’Acremont E., Sloan H., Pik R., Ahmed A., 2013b. Pre-Existing Oblique Transfer Zones and Transfer/Transform Relationships in Continental Margins: New Insights from the Southeastern Gulf of Aden, Socotra Island, Yemen. Tectonophysics 607, 32–50. https://doi.org/10.1016/j.tecto.2013.07.036.

8. Белоусов В.В., Гзовский М.В. Экспериментальная тектоника. 1964. М.: Недра, 118 с.

9. Birse A.C.R., Bott W.F., Morrison J., Samuel M.A., 1997. The Mesozoic and Early Tertiary Tectonic Evolution of the Socotra Area, Eastern Gulf of Aden, Yemen. Marine and Petroleum Geology 14 (6), 675–684. https://doi.org/10.1016/S0264-8172(96)00043-8.

10. Bonini M., Souriot T., Boccaletti M., Brun P., 1997. Successive Orthogonal and Oblique Exrension Episodes in a Rift Zone: Laboratory Experiments with Application to the Ethiopian Rift. Tectonics 16 (2), 347−362. https://doi.org/10.1029/96TC03935.

11. Борняков С.А., Семинский К.Ж., Буддо В.Ю., Мирошниченко А.И., Черемных А.В., Черемных А.С., Тарасова А.А. Основные закономерности разломообразования в литосфере и их прикладные следствия (по результатам физического моделирования). Геодинамика и тектонофизика. 2014. Т. 5. №. 4. С. 823–861. https://doi.org/10.5800/GT-2014-5-4-0159.

12. Bosworth W., Huchon P., McClay K., 2005. The Red Sea and Gulf of Aden Basins. Journal of African Earth Sciences 43 (1–3), 334–378. https://doi.org/10.1016/j.jafrearsci.2005.07.020.

13. Bosworth W., Huchon P., McClay K., 2012. The Red Sea and Gulf of Aden Basins. Phanerozoic Passive Margins, Cratonic Basins and Global Tectonic Maps 62–139. https://doi.org/10.1016/B978-0-444-56357-6.00003-2.

14. Brune S., Autin J., 2013. The Rift to Break‐up Evolution of the Gulf of Aden: Insights from 3D Numerical Lithospheric – Scale Modeling. Tectonophysics 607, 65–79. https://doi.org/10.1016/j.tecto.2013.06.029.

15. Brune S., Corti G., Ranalli G., 2017. Controls of Inherited Lithospheric Heterogeneity on Rift Linkage: Numerical and Analog Models of Interaction between the Kenyan and Ethiopian Rifts across the Turkana Depression. Tectonics 36 (9), 1767–1786. https://doi.org/10.1002/2017TC004739.

16. Corti G., 2012. Evolution and Characteristics of Continental Rifting: Analog Modeling Inspired View and Comparison with Examples from the East African Rift System. Tectonophysics 522–523, 1–33. http://dx.doi.org/10.1016/j.tecto.2011.06.010.

17. Corti G., Calignano E., Petit C., Sani F., 2011. Controls of Lithospheric Structure and Plate Kinematics on Rift Architecture and Evolution: An Experimental Modeling of the Baikal Rift. Tectonics 30 (3), TC3011. http://dx.doi.org/10.1029/2011TC002871.

18. Corti G., Manetti P., 2006. Asymmetric Rifts Due to Asymmetric Mohos: An Experimental Approach. Earth Planetary Science Letters 245 (1–2), 315–329. https://doi.org/10.1016/j.epsl.2006.02.004.

19. Corti G., Ranalli G., Agostini A., Sokoutis D., 2013. Inward Migration of Faulting during Continental Rifting: Effects of Pre-existing Lithospheric Structure and Extension Rate. Tectonophysics 594, 137–148 http://dx.doi.org/10.1016/j.tecto.2013.03.028.

20. Corti G., van Wijk J., Cloetingh S., Morley C.K., 2007. Tectonic Inheritance and Continental Rift Architecture: Numerical and Analogue Models of the East African Rift System. Tectonics 26 (6), TC6006. http://dx.doi.org/10.1029/2006TC002086.

21. D’Acremont E., Leroy S., Beslier M., Bellahsen N., Fournier M., Robin C., Maia M., Gente P., 2005. Structure and Evolution of the Eastern Gulf of Aden Conjugate Margins from Seismic Reflection Data. Geophysical Journal International 160 (3), 869–890. https://doi.org/10.1111/j.1365-246X.2005.02524.x.

22. D’Acremont E., Leroy S., Beslier M., Bellahsen N., Fournier M., Robin C., Maia M., Gente P., 2006. Structure and Evolution of the Eastern Gulf of Aden: Insights from Magnetic and Gravity Data (Encens-Sheba MD117 Cruise). Geophysical Journal International 165 (3), 786–803. https://doi.org/10.1111/j.1365-246X.2006.02950.x.

23. D’Acremont E., Leroy S., Maia M., Gente P., Autin J., 2010. Volcanism, Jump and Propagation on the Sheba Ridge, Eastern Gulf of Aden: Segmentation Evolution and Implications for Oceanic Accretion Processes. Geophysical Journal International 180 (2), 535–551. https://doi.org/10.1111/j.1365-246X.2009.04448.x.

24. Dauteuil O., Bourgeois O., Mauduit T., 2002. Lithosphere Strength Controls Oceanic Transform Zone Structure: Insights from Analogue Models. Geophysical Journal International 150 (3), 706–714. https://doi.org/10.1046/j.1365-246X.2002.01736.x.

25. Dauteuil O., Huchon P., Quemeneur F., Souriot T., 2001. Propagation of an Oblique Spreading Centre: The Western Gulf of Aden. Tectonophysics 332 (4), 423–442. https://doi.org/10.1016/S0040-1951(00)00295-X.

26. Dauteuil O., Mart Y., 1998. Analogue Modeling of Faulting Pattern, Ductile Deformation, and Vertical Motion in Strike-Slip Fault Zones. Tectonics 17 (20), 303–310. https://doi.org/10.1029/97TC03410.

27. Dooley T.P., Schreurs G., 2012. Analogue Modelling of Intraplate Strike-Slip Tectonics: A Review and New Experimental Results. Tectonophysics 574–575, 1–71. https://doi.org/10.1016/j.tecto.2012.05.030.

28. Dubinin E.P., 2018. Geodynamic Setting of the Formation of Microcontinents, Submerged Plateaus, and Nonvolcanic Islands within Continental Margins. Oceanology 58 (3), 435–446. https://doi.org/10.1134/S0001437018030062.

29. Dubinin E.P., Galushkin Yu.I., Grokholskii A.L., Kokhan A.V., Sushchevskaya N.M., 2017. Hot and Cold Zones of the Southeast Indian Ridge and Their Influence on the Peculiarities of Its Structure and Magmatism (Numerical and Physical Modelling). Geotectonics 51, 209–229. https://doi.org/10.1134/S0016852117030049.

30. Dubinin E.P., Grokholskii A.L., Kokhan A.V., Sveshnikov A.A, 2011. Thermal and Rheological State of the Lithosphere and Specific Features of Structuring in the Rift Zone of the Reykjanes Ridge (from the Results of Numerical and Experimental Modeling). Izvestiya, Physics of the Solid Earth 47, 586–599. https://doi.org/10.1134/S1069351311060036.

31. Dubinin E.P., Kokhan A.V., Teterin D.E., Grokholsky A.L., Kurbatova E.S., Sushchevskaya N.M., 2016. Tectonics and Types of Riftogenic Basins of the Scotia Sea, South Atlantic. Geotectonics 50 (1), 35–53. https://doi.org/10.1134/S0016852116010039.

32. Дубинин Е.П., Ушаков С.А. Океанический рифтогенез. 2001. М.: ГЕОС, 292 с.

33. Fournier M., Chamot‐Rooke N., Petit C., Huchon Ph., Al‐Kathiri A., Audin L., Beslier M‐O., d’Acremont E., Fabbri O., Fleury J.‐M., Khanbari Kh., Lepvrier C., Leroy S., Maillot B., Merkouriev S., 2010. Arabia-Somalia Plate Kinematics, Evolution of the Aden-Owen-Carlsberg Triple Junction, and Opening of the Gulf of Aden. Journal of Geophysical Research: Solid Earth 115 (B4), B04102. https://doi.org/10.1029/2008JB006257.

34. Fournier M., Huchon Ph., Khanbari Kh., Leroy S., 2007. Segmentation and Along-Strike Asymmetry of the Passive Margin in Socotra, Eastern Gulf of Aden: Are They Controlled by Detachment Faults? Geochemistry, Geophysics, Geosystems 8 (3), Q03007. https://doi.org/10.1029/2006GC001526.

35. Gerya T., 2012. Origin and Models of Oceanic Transform Faults. Tectonophysics 522–523, 34–54. https://doi.org/10.1016/j.tecto.2011.07.006.

36. Гончаров М.А., Талицкий В.Г., Фролова Н.С. Введение в тектонофизику. М.: Книжный дом «Университет », 2005. 496 с.

37. Grokholskii A.L., Dubinin E.P., 2006. Experimental Modeling of Structure-Forming Deformations in Rift Zones of Mid-Ocean Ridges. Geotectonics 40, 64–80. https://doi.org/10.1134/S0016852106010067.

38. Grokholskii A.L., Dubinin E.P., 2010. Structure Formation in the Rift Zones and in Transvers Offset of the Spreading Axes: Results of Physical Modeling. Izvestiya, Physics of the Solid Earth 46, 49–55. https://doi.org/10.1134/S106935131005006X.

39. Grokholsky A.L., Dubinin E.P. Kokhan A.V., Petrova A.V., 2014. Off Axis Structures of Spreading Zones According to Results of Experimental Modeling. Geotectonics 48, 87–103. https://doi.org/10.1134/S0016852114020034.

40. Гзовский М.В. Основы тектонофизики. М.: Наука, 1975. 536 с.

41. Huchon P., Khanbari K., 2003. Rotation of the Syn-Rift Stress Field of the Northern Gulf of Aden Margin, Yemen. Tectonophysics 364, 147–166. https://doi.org/10.1016/S0040-1951(03)00056-8.

42. Keep M., McClay K.R., 1997. Analogue Modeling of Multiphase Rift System. Tectonophysics 273 (3–4), 239–270. https://doi.org/10.1016/S0040-1951(96)00272-7.

43. Kokhan A.V., Dubinin E.P., Grokholsky A.L., Abramova A.S., 2012. Kinematics and characteristic features of the Knipovich Ridge. Oceanology 52, 688–699. https://doi.org/10.1134/S0001437012050098.

44. Konstantinovskaya E.A., Harris L.B., Poulin J., Ivanov G.M., 2007. Transfer Zones and Fault Reactivation in Inverted Rift Basins: Insights from Physical Modeling. Tectonophysics 441 (1–4), 1–26. https://doi.org/10.1016/j.tecto.2007.06.002.

45. Korostelev F., Leroy S., Keir D., Ahmed A., Boschi L., Rolandone F., Stuart G.W., Obrebski M., Khanbari Kh., El-Hussain I., 2015a. Upper Mantle Structure of the Southern Arabian Margin: Insights from Teleseismic Tomography. Geosphere 11 (5), 1262–1278. https://doi.org/10.1130/GES01159.1.

46. Korostelev F., Leroy S., Keir D., Weemstra C., Boschi L., Molinari I., Ahmed A., Stuart G.W., Rolandone F., Khanbari Kh., Al‐Lazki A., 2015b. Magmatism at Continental Passive Margins Inferred from Ambient-Noise Phase-Velocity in the Gulf of Aden. Terra Nova 28 (1), 19–26. https://doi.org/10.1111/ter.12182.

47. Leroy S., d’Acremont E., Tiberi C., Basuyau C., Autin J., Lucazeau F., Sloan H., 2010a. Recent Off-Axis Volcanism in the Eastern Gulf of Aden: Implications for Plume–Ridge Interaction. Earth and Planetary Science Letters 293 (1–2), 140–153. https://doi.org/10.1016/j.epsl.2010.02.036.

48. Leroy S., Lucazeau F., d’Acremont E., Watremez L., Autin J., Rouzo S., Bellahsen N., Tiberi C., 2010b. Contrasted Styles of Rifting in the Eastern Gulf of Aden: A Combined WiDe-angle, Multichannel Seismic, and Heat Flow Survey. Geochemistry, Geophysics, Geosystems 11 (Q07004), 1–14. http://dx.doi.org/10.1029/2009GC002963.

49. Leroy S., Razin Ph., Autin J., Bache F., d’Acremont E., Watremez L., Robinet J., Baurion C., 2012. From Rifting to Oceanic Spreading in the Gulf of Aden: A Synthesis. Arabian Journal of Geosciences 5, 859–901. http://dx.doi.org/10.1007/s12517-011-0475-4.

50. Логачев Н.А., Борняков С.А., Шерман С.И. О механизме формирования Байкальской рифтовой зоны по результатам физического моделирования // Доклады АН. 2000. Т. 373. № 3. С. 388−390.

51. Лукашов А.А. Морфоструктурная эволюция южного фланга Аденского рифта // Геоморфология. 2013. №. 1. С. 35–43.

52. Malkin B.V., Shemenda A.I., 1991. Mechanism of Rifting: Considerations Based on Results of Physical Modelling and on Geological and Geophysical Data. Tectonophysics 199 (2–4), 193–210. https://doi.org/10.1016/0040-1951(91)90172-O.

53. Mart Y., Dauteuil O., 2000. Analogue Experiment of Propagation of Oblique Rifts. Tectonophysics 316 (1–2), 121−132. https://doi.org/10.1016/S0040-1951(99)00231-0.

54. Mauduit T., Dauteuil O., 1996. Small-Scale Models of Oceanic Transform Zones. Journal Geophysical Research 101 (В9). https://doi.org/10.1029/96JB01509.

55. Maus S., Barckhausen U., Berkenbosch H., Bournas N., Brozena J., Childers V., Dostaler F., Fairhead J.D. et al., 2009. EMAG2: A 2– Arc Min Resolution Earth Magnetic Anomaly Grid Compiled from Satellite, Air-Borne, and Marine Magnetic Measurements. Geochemistry, Geophysics, Geosystems 10 (8), Q08005. https://doi.org/10.1029/2009GC002471.

56. McClay K., Ellis P., 1987. Geometries of Extensional Fault System Developed in Model Experiments. Geology 15 (4), 341−344. https://doi.org/10.1130/0091-7613(1987)15%3C341:GOEFSD%3E2.0.CO;2.

57. McClay K.R., Dooley T., Whitehouse P., Mills M., 2002. 4-D Evolution of Rift Systems: Insights from Scaled Physical Models. AAPG Bulletin 86 (6), 935–959. https://doi.org/10.1306/61EEDBF2-173E-11D7-8645000102C1865D.

58. Michon L., Merle O., 2003. Mode of Lithospheric Extension: Conceptual Models from Analogue Modeling. Tectonics 22 (4), 1028. https://doi.org/10.1029/2002TC001435.

59. Molnar N.E., Cruden A.R., Betts P.G., 2017. Interactions between Propagating Rotational Rifts and Linear Rheological Heterogeneities: Insights from Three Dimensional Laboratory Experiments. Tectonics 36 (3), 420–443. https://doi.org/10.1002/2016TC004447.

60. Nestola Y., Storti F., Bedogni E., Cavozzi C., 2013. Shape Evolution and Finite Deformation Pattern in Analog Experiments of Lithosphere Necking. Geophysical Research Letters 40 (19), 5052–5057. https://doi.org/10.1002/grl.50978.

61. Nestola Y., Storti F., Cavozzi C., 2015. Strain Rate-Dependent Lithosphere Rifting and Necking Architectures in Analog Experiments. Journal of Geophysical Research: Solid Earth 120 (1), 584–594. https://doi.org/10.1002/2014JB011623.

62. Sandwell D., Muller D., Smith W., Garcia E., Francis R., 2014. New Global Marine Gravity Model from Cryosat-2 and Jason-1 Reveals Buried Tectonic Structure. Science 346 (6205), 65–67. https://doi.org/10.1126/science.1258213.

63. Seminskii K.Zh., Kogut E.I., 2009. Governing Factors in the Development of Depressions and Faults in the Baikal Rift Zone: Results of a Physical Experiment. Doklady Earth Sciences 424 (1), 15–18. http://dx.doi.org/10.1134/S1028334X09010048.

64. Семинский К.Ж. Внутренняя структура разломных зон: пространственно-временная эволюция на основе результатов физического моделирования // Геодинамика и тектонофизика. 2012. Т. 3. №. 3. С. 183–194. https://doi.org/10.5800/GT-2012-3-3-0070.

65. Шеменда А.И. Критерии подобия при механическом моделировании тектонических процессов // Геология и геофизика. 1983. №. 10. С. 10–19.

66. Шеменда А.И. Некоторые аспекты деформаций литосферы при растяжении // Доклады АН СССР. 1984. Т. 275. №. 2. С. 346–349.

67. Shemenda A.I., Grokholsky A.L., 1991. A Formation and Evolution of Overlapping Spreading Centers (Constrained on the Basis of Physical Modeling). Tectonophysics 199 (2–4), 389−404. https://doi.org/10.1016/0040-1951(91)90180-Z.

68. Shemenda A.I., Grocholsky A.L., 1994. Physical Modeling of Slow Seafloor Spreading. Journal of Geophysical Research: Solid Earth 99 (В5), 9137−9153.

69. Шерман С.И., Борняков С.А., Буддо В.Ю. Области динамического влияния разломов (результаты моделирования). Новосибирск: Наука, 1983. 112 с.

70. Шерман С.И., Семинский К.Ж., Борняков С.А., Адамович А.Н., Лобацкая Р.М., Лысак С.В., Леви К.Г. Разломообразование в литосфере: Зоны растяжения. Новосибирск: Наука, 1992. 227 с.

71. Smith W., Sandwell D., 1997. Global Sea Floor Topography from Satellite Altimetry and Ship Depth Soundings. Science 277 (5334), 1956–1962. https://doi.org/10.1126/science.277.5334.1956.

72. Sokoutis D., Corti G., Bonini M., Brun J.-P., Cloetingh S., Mauduit T., Manetti P., 2007. Modelling the Extension of Heterogeneous Hot Lithosphere. Tectonophysics 444 (1–4), 63–79. https://doi.org/10.1016/j.tecto.2007.08.012.

73. Tentler T., 2003. Analogue Modeling of Overlapping Spreading Centers: Insight into Their Propagation and Coalescence. Tectonophysics 376 (1–2), 99–115. https://doi.org/10.1016/j.tecto.2003.08.011.

74. Tentler T., 2007. Focused and Diffuse Extension in Controls of Ocean Ridge Segmentation in Analogue Models. Tectonics 26 (50), TC5008. https://doi.org/10.1029/2006TC002038.

75. Tentler T., Acocella V., 2010. How Does the Initial Configuration of Oceanic Ridge Segments Affect Their Interaction? Insights from Analogue Models. Journal of Geophysical Research: Solid Earth 115 (В1), B01401. https://doi.org/10.1029/2008JB006269.

76. The GEBCO_08 Grid, 2009. Version 20090202. The General Bathymetric Chart of the Oceans (GEBCO). Available from: http://www.gebco.net.

77. Tirel C., Brun J.-P, Sokoutis D., 2006. Extension of Thickened and Hot Lithospheres: Inferences from Laboratory Modeling. Tectonics 25 (1), TC1005. https://doi.org/10.1029/2005TC001804.

78. Weatherall P., Marks K.M., Jakobsson M., Schmitt Th., Tani Sh., Arndt J.E., Rovere M., Chayes D., Ferrini V., Wigley R., 2015. A New Digital Bathymetric Model of the World’s Oceans. Earth and Space. Science 2 (8), 331–345. https://doi.org/10.1002/2015EA000107.

79. Withjack M., Jamison W., 1986. Deformation Produced by Oblique Rifting. Tectonophysics 126 (2–4), 99−124. https://doi.org/10.1016/0040-1951(86)90222-2.

80. Zwaan F., Schreurs G., Naliboff J., Buiter S.H., 2016. Insights into the Effects of Oblique Extension on Continental Rift Interaction from 3D Analogue and Numerical Models. Tectonophysics 693 (В), 239–260 https://doi.org/10.1016/j.tecto.2016.02.036.


Для цитирования:


Дубинин Е.П., Грохольский А.Л. Особенности структурообразования в процессе развития литосферы Аденского залива (физическое моделирование). Геодинамика и тектонофизика. 2020;11(3):522-547. https://doi.org/10.5800/GT-2020-11-3-0489

For citation:


Dubinin E.P., Grokholsky A.L. Specific features of structure formation during the development of the lithosphere of the Gulf of Aden (physical modeling). Geodynamics & Tectonophysics. 2020;11(3):522-547. (In Russ.) https://doi.org/10.5800/GT-2020-11-3-0489

Просмотров: 210


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2078-502X (Online)