Late Mesozoic adakite granites of the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt: material composition and geodynamic conditions of formation
https://doi.org/10.5800/GT-2020-11-3-0487
Abstract
Granitoids of the Magdagachi complex were studied using new and published petrochemical, geochemical and isotopic (Sm-Nd, Rb-Sr) data. Granitoid samples were taken from the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt (MOOB). Their analysis shows increased concentrations of Sr, Ba, Eu; reduced concentrations of Nb, Ta; abnormally low concentrations of HREE, Y and Yb; significant fractionation of REE; and high Sr/Y ratios. Therefore, the Magdagachi granitoids are "classical" adakites that may have formed at a depth of more than 45 km due to melting of eclogite with a garnet content of 20–50 %. Such conditions could exist under subduction as a result of melting of the frontal or lateral parts of the slab in subduction windows formed during oblique subduction at an orthogonal sinking angle. Highly metamorphosed lower crust Precambrian formations were also melted, and a source of parental melts could have been composed of both the mantle and crustal materials. Two tectonic scenarios are proposed that could have been accompanied by the formation of Magdagachi granitoids. Both scenarios refer to subduction processes, but differ in interactions between various regional structures in the Late Mesozoic.
Keywords
About the Authors
I. M. DerbekoRussian Federation
Inna M. Derbeko.
1 Relochniy Ln, Blagoveschensk 675000.
A. V. Chugaev
Russian Federation
35 Staromonetny Ln, Moscow 119017.
References
1. Arevalo Jr., McDonough W.F., 2010. Chemical Variations and Regional Diversity Observed in MORB. Chemical Geology 271 (1–2), 70–85. https://doi.org/10.1016/j.chemgeo.2009.12.013.
2. Avdeiko G.P., Palueva A.A., Kuvikas O.V., 2011. Adakites in Subduction Zones of the Pacific Ring: Review and Analysis of Geodynamic Conditions for Their Formation. Bulletin of KRAESC. Earth Sciences 1 (17), 45–60 (in Russian)
3. Barbarian B., 1990. Granitoids: Main Petrogenetic Classifications in Relation to Origin and Tectonic Setting. Geological Journal 25 (3–4), 227–238. https://doi.org/10.1002/gj.3350250306.
4. Bogatikov O.A. (Ed.), 1983. Igneous Rock. Part 1. Nauka, Moscow, 367 p. (in Russian)
5. Bourdon E., Eissen J-P., Monzier M., Robin C., Martin H., Cotton J., Hall M.L., 2002. Adakite-Like Lavas from Antisana Volcano (Ecuador): Evidence for Slab Melt Metasomatism beneath Andean Northern Volcanic Zone. Journal of Petrology 43 (2), 199–217. https://doi.org/10.1093/petrology/43.2.199.
6. Bryant J.A., Yogodzinski G.M., Hall M.L., Lewicki J.L., Bailey D.G., 2006. Geochemical Constraints on the Origin of Volcanic Rocks from the Andean Northern Volcanic Zone, Ecuador. Journal of Petrology 47, 1147–1175. http://doi.org/10.1093/petrology/eg1006.
7. Castillo P.R., 2006. An Overview of Adakite Petrogenesis. Chinese Science Bulletin 51, 257–268. https://doi.org/10.1007/s11434-006-0257-7.
8. Chappell B.W., White A.I.R., 1974. Two Contrasting Granite Types. Pacific Geology 8, 173–174.
9. Chappell B.W., White A.J.R., 1992. I- and S-Type Granites in the Lachlan Fold Belt. Transactions of the Royal Society of Edinburgh 83 (1–2), 1–26. https://doi.org/10.1017/S0263593300007720.
10. Defant M.J., Drummond M.S., 1990. Derivations of Some Modern Arc Magmas by Melting of Young Subducted Lithosphere. Nature 347, 662–665. http://dx.doi.org/10.1038/347662a0.
11. Defant M.J., Jackson T.E., Drummond M.S., Bellon H., Feigenson M.D., Maury R. C., Stewart R.H., 1992. The Geochemistry of Young Volcanism throughout Western Panama and South-Eastern Costa Rica: An Overview. Journal of Geological Society 149, 569–579. https://doi.org/10.1144/gsjgs.149.4.0569.
12. Derbeko I.M., 2012. Late Mesozoic Volcanism of the Mongol-Okhotsk Belt (Eastern Termination and Southern Frame of the Belt’ Eastern Flank). LAMBERT Academic Publishing GmbH & Co.KG, Saarbrücken, 97 p. (in Russian)
13. Derbeko I.M., 2015. Mesozoic Adakite Volcano Plutonic Complex of the Upper Amur Region (Russia). In: Petrography of Igneous and Metamorphic Rocks. KSC RAS, Petrozavodsk, p. 153–155 (in Russian)
14. Derbeko I.M., 2018. Magmatism as an Indicator of Synchronous Geodynamic Events in the Frame of the Mongol-Okhotsk Orogenic Belt. In: Problems of Tectonics and Geodynamics of the Earth’s Crust and Mantle. Materials of the L Tectonic Meeting. V. 1. GEOS, Moscow, p. 142–146 (in Russian)
15. Derbeko I.M., 2019. The Role of Subduction Processes during the Closure of the Eastern Flank of the Mongolo-Okhotsk Basin. In: Tectonics, Deep Structure and Mineralogy of East Asia. The X Kosygin Readings. Materials of the All-Russia Conference with International Participation (September 10–12, 2019). Kosygin Institute of Tectonics and Geophysics FEB RAS, Khabarovsk, p. 27–32 (in Russian)
16. Frost B.R., Barnes C.G., Collins W.J., Arculus R.G., Ellis D.J, Frost C.D., 2001. A Geochemical Classification for Granitic Rocks. Journal of Petrology 42 (11), 2033–2048. https://doi.org/10.1093/petrology/42.11.2033.
17. Gordienko V.I., Klimuk V.S., Quan Heng, 2000. Upper Amur Volcano Plutonic Belt of East Asia. Geology and Geophysics 41 (12), 1655–1669 (in Russian)
18. Gu H.-O., Xiao Y., Santosh M., Li W.-Y., Yang X., Pack A., Hou Z., 2013. Spatial and Temporal Distribution of Mesozoic Adakitic Rocks along the Tan-Lu Fault, Eastern China: Constraints on the Initiation of Lithospheric Thinning. Lithos 177, 352–365. https://dx.doi.org/10.1016/j.lithos.2013.07.011.
19. Guo F., Fan W., Li C., 2006. Geochemistry of Late Mesozoic Adakites from the Sulu Belt, Eastern China: Magma Genesis and Implications for Crustal Recycling beneath Continental Collisional Orogens. Geological Magazine 143 (1), 1–13. https://doi.org/10.1017/S0016756805001214.
20. Guo Z., Wilson M., Liu J., 2007. Post-Collisional Adakites in South Tibet: Products of Partial Melting of Subduction-Modified Lower Crust. Lithos 96 (1), 205–224. https://doi.org/10.1016/j.lithos.2006.09.011.
21. Jahn B-M., Wu F.Y., Lo C.H., Tsai C.H., 1999. Crust – Mantle Interaction Induced by Deep Subduction of the Continental Crust: Geochemical and Sr–Nd Isotopic Evidence from Post-collisional Mafic – Ultramafic Intrusions of the Northern Dabie Complex, Central China. Chemical Geology 157 (1–2), 119–146. https://doi.org/10.1016/S0009-2541(98)00197-1.
22. Jahn B-M., Zhang Z.Q., 1984. Archaean Granulite Gneisses from Eastern Hebei Province, China: Rare Earth Geochemistry and Tectonic Implications. Contributions to Mineralogy and Petrology 85, 224–243. https://doi.org/10.1007/BF00378102.
23. Kay R.W., 1978. Aleutian Magnesian Andesites: Melts from Subducted Pacific Ocean Crust. Journal of Volcanology and Geothermal Research 4 (1–2), 117–132. https://doi.org/10.1016/0377-0273(78)90032-X.
24. Kay S.M., Ramos V.A., Marquez Y.M., 1993. Evidence in Cerro Pampa Volcanic Rocks for Slab-Melting Prior to Ridge–Trench Collision in Southern South America. Journal of Geology 101 (6), 703–714. https://doi.org/10.1086/648269.
25. Kozlovsky E.A. (Ed.), 1988. Geology of the BAM Zone. Geological Structure. V. 1. Nedra, Leningrad, 443 p. (in Russian) [Геология зоны БАМ. Геологическое строение / Ред. Е.А. Козловский. Л.: Недра, 1988. Т. 1. 443 с.].
26. Kozyrev S.K., Volkova Yu.R., Ignatenko N.N., Mavrinskaya S.A., Popov M.A., Trutneva N.V., 2002a. State Geological Map of the Russian Federation. Zeya Series. Scale 1:200000. Sheet N-51-XXIV. Explanatory Note. VSEGEI, Saint Petersburg, 113 p. (in Russian)
27. Kozyrev S.K., Volkova Yu.R., Ignatenko N.N., Popov M.A., Ignatenko O.N., 2002b. State Geological Map of the Russian Federation. Scale 1:200000. Zeya Series. Sheets N-51-XXIII, N-51-XXIX. Explanatory Note.VSEGEI, Saint Petersburg, 112 p. (in Russian)
28. Lai S.C., Qin J.F., Li Y.F., 2007. Partial Melting of Thickened Tibetean Crust: Geochemical Evidence from Cenozoic Adakitic Volcanic Rocks. International Geological Review 49, 357–373. https://doi.org/10.2747/0020-6814.49.4.357.
29. Larin A.M., Kotov A.B., Sal’nikova E.B., Kovach V.P., Sergeeva N.A., Yakovleva S.Z., 2001. Mesozoic Granites of the Chubachi Massif of the Tukuringra Complex (Dzhugdzhur-Stanovoy Folded Area): New Geochemical, Geochronological and Isotope Geochemical Data. Petrology 9 (4), 417–432 (in Russian)
30. Le Bas M., Le Maitre R.W., Streckeisen A., Zanettin B., 1986. A Chemical Classification of Volcanic Rocks Based on the Total-Silica Diagram. Journal Petrology 27 (3), 745–750. https://doi.org/10.1093/petrology/27.3.745.
31. Le Roux A.P., 1986. Geochemical Correlation between Southern African Kimberlites and South Atlantic Hot Spot. Nature 324, 243–245. https://doi.org/10.1038/324243a0.
32. Liu J., Bohlen S.R., Ernst W.G., 1996. Stability of Hydrous Phases in Subducting Oceanic Crust. Earth and Planetary Science Letters 143 (1–4), 161–171. https://doi.org/10.1016/0012-821X(96)00130-6.
33. Liu C., Zhou Z., Tang Y., Wu C., Li H., Zhu Y., Jiang T., Liu W., Ye B., 2017. Geochronology and Tectonic Settings of Late Jurassic – Early Cretaceous Intrusive Rocks in the Ulanhot Region, Central and Southern Da Xingan Range. Geological Magazine 154 (5), 923–945. https://doi.org/10.1017/S0016756816000418.
34. Lomize M.G., 2003. Initial Phase of Subduction on Continental Margins. Geotectonics 5, 73–88 (in Russian) [Ломизе М.Г. Начальная фаза субдукции на континентальных окраинах // Геотектоника. 2003. № 5. С. 73–88].
35. Ma Q., Zheng J.P., Xu Y.G., Griffin W.L., Zhang R.S., 2015. Are Continental "Adakites" Derived from Thickened or Foundered Lower Crust? Earth and Planetary Science Letters 419, 125–133. http://dx.doi.org/10.1016/j.epsl.2015.02.036.
36. Macpherson C.G., Dreher S.T., Thirlwall M.F., 2006. Adakites without Slab Melting: High Pressure Differentiation of Island Arc Magma, Mindanao, the Philippines. Earth and Planetary Science Letters 243 (3–4), 581–593. http://dx.doi.org/10.1016/j.epsl.2005.12.034.
37. Martin H., 1993. The Mechanisms of Petrogenesis of the Archaean Continental Crust – Comparison with Modern Processes. Lithos 30 (3–4), 373–388. https://doi.org/10.1016/0024-4937(93)90046-F.
38. Martin H., 1999. Adakitic Magmas: Modern Analogues of Archaean Granitoids. Lithos 46 (3), 411–429. https://doi.org/10.1016/S0024-4937(98)00076-0.
39. Martin H., Smithies R.H., Rapp R., Moyen J.-F., Champion D., 2005. An Overview of Adakite, Tonalite-Trondhjemite-Granodiorite (TTG), and Sanukitoid: Relationships and Some Implications for Crustal Evolution. Lithos 79 (1–2), 1–24. https://doi.org/10.1016/j.lithos.2004.04.048.
40. Martynyuk M.V., Ryamov S.A., Kondratieva V.A., 1990. Explanatory Note to the Schematic Map of Division and Correlation of Magmatic Complexes of the Khabarovsk Krai and the Amur Region. Dalgeologia, Khabarovsk, 215 p. (in Russian)
41. Maruyama S., Seno T., 1986. Orogeny and Relative Plate Motions: Example of the Japanese Islands. Tectonophysics 127 (3–4), 305–329. https://doi.org/10.1016/0040-1951(86)90067-3.
42. Muir R.J., Weaver S.D., Bradshaw J.D., Eby G.N., Evans J.A., 1995. Geochemistry of the Cretaceous Separation Point Batholith, New Zealand: Granitoid Magmas Formed by Melting of Mafic Lithosphere. Journal of Geological Society of London 152, 689–701. http://dx.doi.org/10.1144/gsjgs.152.4.0689.
43. Parfenov L.M., Berzin N.A., Khanchuk A.I., Badarch G., Belichenko V.G., Bulgatov A.N., Dril’ S.I., Kirillova G.L., Kuzmin M.I., Nokleberg U., Prokopiev A.V., Timofeev V.F., Tomurtogoo O., Yan H., 2003. Model of Formation of Orogenic Belts of Central and Northeast Asia. Pacific Geology 22 (6), 7–41 (in Russian)
44. Patiño Douce A.E., Beard J.S., 1995. Dehydration – Melting of Biotite Gneiss and Quartz Amphibole from 3 to 15 Kbar. Journal of Petrology 36 (3), 707–738. https://doi.org/10.1093/petrology/36.3.707.
45. Patiño Douce A.E., 1999. What Do Experiments Tell Us about the Relative Contributions of Crust and Mantle to the Origin of Granitic Magmas? Geological Society of London, Special Publications 168 (1), 55–75. https://doi.org/10.1144/GSL.SP.1999.168.01.05.
46. Petford N., Atherton M.P., 1996. Na-Rich Partial Melts from Newly Underplated Basaltic Crust: The Cordillera Blanca Batholith, Peru. Journal of Petrology 37 (6), 1491–1521. https://doi.org/10.1093/petrology/37.6.1491.
47. Petruk N.N., Belikova T.V., Derbeko I.M., 2001. Geological Map of the Amur Region. Scale 1:500000. Explanatory Note. LLC Amurgeologia, Blagoveshchensk, 227 p. (in Russian)
48. Pokrovsky B.G., Volynets O.V., 1999. Geochemistry of Oxygen Isotopes in Effusive Rocks of the Kuril-Kamchatka Arc. Petrology 7 (3), 227–251 (in Russian)
49. Sajona F.G., Maury R.C., Bellon H., Cotton J., Defant M.J., 1993. Initiation of Subduction and the Generation of Slab Melts in Western and Eastern Mindanao, Philippines. Geology 21 (11), 1007–1010. https://doi.org/10.1130/0091-7613(1993)021%3C1007:IOSATG%3E2.3.CO;2.
50. Shaw J.E., Baker J.A., Menzies M.A., Thirlwall M.F., Ibrahim K.M., 2003. Petrogenesis of the Largest Intraplate Volcanic Field on the Arabian Plate (Jordan): A Mixed Lithosphere – Astenosphere Source Active by Lithospheric Extension. Journal of Petrology 44 (9), 1657–1679. http://dx.doi.org/10.1093/petrology/egg052.
51. Sorokin A.A., Ponomarchuk V.A., Kozyrev S.K., Sorokin A.P., 2004. Geochronology and Correlation of Mesozoic Magmatic Formations in the Northern Margin of the Amur Superterrane. Stratigraphy. Geological Correlation 12 (6), 36–52 (in Russian)
52. Sorokin A.A., Ponomarchuk V.A., Kozyrev S.K., Sorokin A.P., Voropaeva M.S., 2003. New Isotope Geochronological Data on Mesozoic Magmatic Formations of the Northeastern Margin of the Amur Superterrane. Pacific Geology 22 (2), 3–6 (in Russian)
53. Stern C.R., Kilian R., 1996. Role of the Subducted Slab, Mantle Wedge and Continental Crust in the Generation of Adakites from the Andean Austral Volcanic Zone. Contributions to Mineralogy and Petrology 123, 263–281. https://doi.org/10.1007/s004100050155.
54. Strikha V.E., 2001. Late Mesozoic Granitoids of Gold-Bearing Ore-Magmatic Systems of the Upper Amur Region. In: Genesis of Gold Deposits and Precious Metal Mining Methods. Blagoveshchensk, p. 183–191 (in Russian)
55. Strikha V.E., 2005. Early Jurassic Granitoids of the Chagoyansk and Shimanov Massifs of the Mamyn Block of the Amur Superterrane (Upper Amur Region). Pacific Geology 24 (5), 66–82 (in Russian)
56. Strikha V.E., 2006. Late Mesozoic Collision Granitoids of the Upper Amur Region: New Geochemical Data. Geochemistry 8, 855–872 (in Russian)
57. Sun S.S., McDonough W.F., 1989. Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. In: A.D. Sounders, M.J. Norry (Eds), Magmatism in the Ocean Basins. Geological Society Special Publication 42, 313–345. http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19.
58. Taylor S.R., McLennan S.M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Oxford, 379 p.
59. Thorkelson D.J., Breitsprecher K. 2005. Partial Melting of Slab Window Margins: Genesis of Adakitic and Non Adakitic Magmas. Lithos 79, 25–41. https://doi.org/10.1016/j.lithos.2004.04.049.
60. Topuz G., Okay A.I., Altherr R., Altherr R., Schwarz W.H., Siebel W., Zack T., 2011. Post-collisional Adakite-Like Magmatism in the Agvanis Massif and Implications for the Evolution of the Eocene Magmatism in the Eastern Pontides (NE Turkey). Lithos 125, 131–150. http://dx.doi.org/10.1016/j.litos.2011.02/003.
61. Volkova Yu.R., Ignatenko N.N., Popov M.A., Trutneva N.V., 2002. State Geological Map of the Russian Federation. Scale 1:200,000. Zeya Series. Sheet N-51-XXX. Explanatory Note. VSEGEI, Saint Petersburg, 131 p. (in Russian)
62. Wang Q., McDermott F., Xu J.-F., Bellon H.; Zhu Y.T., 2005. Cenozoic K-Rich Adakitic Volcanic Rocks in the Hohxil Area, Northern Tibet: Lower-Crustal Melting in an Intracontinental Setting. Geology 33, 465–468. https://doi.org/10.1130/G21522.1.
63. Wen D.R., Chung S.L., Song B., Iizuku Y., Yang H.J., Ji J.Q., Liu D.Y., Sylvain G., 2008. Late Cretaceous Intrusions of Adakitic Geochemical Characteristics, SE Tibet: Petrogenesis and Tectonic Implications. Lithos 105, 1–11. https://doi.org/10.1016/j.lithos.2008.02.005.
64. Whalen J.B., Currie K.L., Chappell B.W., 1987. A-Type Granites – Geochemical Characteristics, Discrimination and Petrogenesis. Contributions to Mineralogy and Petrology 95 (4), 407–419. https://doi.org/10.1007/BF00402202.
65. Zen E-An, 1986. Aluminum Enrichment in Silicate Melts by Fractional Crustallization: Some Mineralogic and Petrographic Constraints. Juornal of Petrology 27, 1095–1117. https://doi.org/10.1093/petrology/27.5.1095.
66. Zhang Hung, Zhao Chunjing, Yao Zhen, Quan Hen, 2000. Dynamic Basis of Mesozoic Volcanism in the Northern Part of Greater Khingan (PRC). Pacific Geology 19 (1), 109–117 (in Russian)
67. Zonnenshain L.P., Kuzmin M.I., Natapov L.M., 1990. Tectonics of Lithospheric Plates of the USSR. Book 1. Nedra, Moscow, 328 p. (in Russian)
Review
For citations:
Derbeko I.M., Chugaev A.V. Late Mesozoic adakite granites of the southern frame of the eastern flank of the Mongol-Okhotsk orogenic belt: material composition and geodynamic conditions of formation. Geodynamics & Tectonophysics. 2020;11(3):474-490. (In Russ.) https://doi.org/10.5800/GT-2020-11-3-0487