Stages of Carboniferous-Triassic magmatism in the Black Sea region based on isotope-geochronological study of detrital zircons from jurassic coarse clastic strata of the Mountainous Crimea
https://doi.org/10.5800/GT-2020-11-3-0486
Abstract
The article presents the results of U-Pb isotope dating of detrital zircons from the Jurassic coarse rocks in the apex and the western slope of Mnt. Biyuk-Sinor (the southern wall of the Baidar basin, near the village of Orlinoe). These dates are compared with the detrital zircon dates obtained for sandy rocks from the Upper Jurassic coarse clastic strata composing the slopes of Mnt. Spilia near Balaklava Harbor and Mnt. Southern Demerdzhi near Alushta city, as well as the Middle Jurassic Bitak conglomerates near the village of Strogonovka (suburb of Simferopol city). The comparison shows a high degree of similarity of the averaged age characteristics of the main detrital zircon populations. Sandy rocks of Jurassic coarse clastic strata for zircon dating were sampled in four locations of the Mountaineous Crimea. Based on their dates and a summary set of ages of detrital zircon grains from sandstones of the Southern Coast of Crimea, spanning the stratigraphic interval from the Middle Jurassic to Neogene, we can provide a statistically reliable specification of the Carboniferous-Triassic time interval (360–200 Ma) of magmatic activity within the Black Sea region. This period was bounded in time by the Late Devonian and Early Jurassic relative magmatic lulls. None of the zircon grains of the Carboniferous-Triassic age has revealed Hf-isotopic characteristics indicating any significant contribution of crustal material older than the Mesoproterozoic into the protolith of the parent zircon rocks. Within the Carboniferous-Triassic interval of magmatic activity, three stages are distinguished: (I) 360–315 Ma, (II) 315–270 Ma, and (III) 270–200 Ma. Magmatic stage I (360–315 Ma) is related to the closure of the Reik ocean, which completed after the subducted slab ‘broke off’ into the mantle and was accompanied by the ubiquitously manifested HT-LP metamorphism. Zircon grains of stage I are characterized by peak ages of about 325–340 Ma and the dominance of negative εHf. Magmatic stages II (315–270 Ma) and III (270–200 Ma) correlate with functioning of the Scythian-Pontian volcanic suprasubduction belt. In these magmatic stages, zircon εHf values scatter from weakly negative to substantially positive (referred to the depleted mantle), which is typical for volcanic arcs. Fuzzy separation of stages II and III and strong variability of the peak ages of zircons from the studied samples (which we associate with these stages) can be due both to changes in magmatic activity in different segments of the belt, and to changes in the erosion intensity of crystalline complexes of the belt during the subsequent stages evolution caused by tectonic rearrangements within the Paleo-Tethys ocean and its peri-oceanic structures.
Keywords
About the Authors
T. V. RomanyukRussian Federation
10/1 Bolshaya Gruzinskaya St, Moscow 123242.
N. V. Kuznetsov
Russian Federation
Nikolay B. Kuznetsov.
7 Pyzhevsky Ln, Moscow 119017.
S. V. Rud’ko
Russian Federation
7 Pyzhevsky Ln, Moscow 119017.
A. A. Kolesnikova
Russian Federation
7 Pyzhevsky Ln, Moscow 119017.
D. V. Moskovsky
Russian Federation
7 Pyzhevsky Ln, Moscow 119017; 1 Leninskie Gory, Moscow 119991.
A. S. Dubensky
Russian Federation
7 Pyzhevsky Ln, Moscow 119017; 1 Leninskie Gory, Moscow 119991.
V. S. Sheshukov
Russian Federation
7 Pyzhevsky Ln, Moscow 119017.
S. M. Lyapunov
Russian Federation
7 Pyzhevsky Ln, Moscow 119017.
References
1. Çimen O., 2020. Geochemical Characteristics of the Adakite-Like Dodurga Pluton (Central Pontides, N Turkey): Implications for Middle Triassic Continental Arc Magmatism in Southern Black Sea Region. International Journal of Earth Science 109, 809–829. https://doi.org/10.1007/s00531-020-01831-x.
2. Çimen O., Göncüoğlu M.C., Simonetti A., Sayıt K., 2018. New Zircon U-Pb LA-ICP-MS Ages and Hf Isotope Data from the Central Pontides (Turkey): Geological and Geodynamic Constraints. Journal of Geodynamics 116, 23–36. https://doi.org/10.1016/j.jog.2018.01.004.
3. Fikolina L.A., Beletsky S.V., Belokrys O.A., Derenyuk D.N., Krasnorudskaya S.I., Obsharskaya N.N., Korol’ B.I., Ivakin M.N., Shevchuk N.V., Dyachenko L.N., Averina V.N., Peresadko I.N., Pupysheva V.G., Sevastyanova V.P., 2019. State Geological Map of the Russian Federation. Scythian Series. Scale 1:1 000 000. Sheet L-36 (Simferopol). Explanatory Note. VSEGEI, Saint Petersburg, 979 p. (in Russian)
4. Genc S.C., 2004. A Triassic Large Igneous Province in the Pontides, Northern Turkey: Geochemical Data for Its Tectonic Setting. Journal of Asian Earth Sciences 22 (5), 503–516. https://doi.org/10.1016/S1367-9120(03)00090-7.
5. Genc S.C., Tuysuz O., 2010. Tectonic setting of the Jurassic bimodal magmatism in the Sakarya Zone (Central and Western Pontides), Northern Turkey: A Geochemical and Isotopic Approach. Lithos 118 (1–2), 95–111. https://doi.org/10.1016/j.lithos.2010.03.017.
6. Georgiev S., von Quadt A., Heinrich C.A., Peytcheva I., Marchev P., 2012. Time Evolution of a Rifted Continental Arc: Integrated ID-TIMS and LAICPMS Study of Magmatic Zircons from the Eastern Srednogorie, Bulgaria. Lithos 154, 53–67. https://doi.org/10.1016/j.lithos.2012.06.020.
7. Griffin W.L., Powell W.J., Pearson N.J., O’Reilly S.Y., 2008. GLITTER: Data Reduction Software for Laser Ablation ICP-MS. In: P.J. Sylvester (Ed.), Laser Ablation-ICP-MS in the Earth Sciences: Current Practices and Outstanding Issues. Mineralogical Association of Canada Short Course Series. Vol. 40. Vancouver, 308–311.
8. Guynn J., Gehrels G., 2010. Comparison of Detrital Zircon Age Distribution Using the K-S Test Visualization and Representation of Age-Distribution Data Histograms. Available from: https://sites.google.com/a/laserchron.org/laserchron/home (Last Accessed August – October, 2019).
9. Harrison T.M., Watson E.B., Aikman A.B., 2007. Temperature Spectra of Zircon Crystallization in Plutonic Rocks. Geology 35 (7), 635–638. https://doi.org/10.1130/G23505A.1.
10. Horstwood M.S.A., Kosler J., Gehrels G., Jackson S.E., McLean N.M., Paton Ch., Pearson N.J., Sircombe K., Sylvester P., Vermeesch P., Bowring J.F., Condon D.J., Schoene B., 2016. Community-Derived Standards for LA-ICP-MS U-(Th-)Pb Geochronology – Uncertainty Propagation, Age Interpretation and Data Reporting. Geostandards and Geoanalytical Research 40 (3), 311–332. https://doi.org/10.1111/j.1751-908X.2016.00379.x.
11. Hoskin P.W., Schaltegger U., 2003. The Composition of Zircon and Igneous and Metamorphic Petrogenesis. Reviews in Mineralogy and Geochemistry 53 (1), 27–62. https://doi.org/10.2113/0530027.
12. Kaczmarek M.A., Müntener O., Rubatto D., 2008. Trace Element Chemistry and U–Pb Dating of Zircons from Oceanic Gabbros and Their Relationship with Whole Rock Composition (Lanzo, Italian Alps). Contributions to Mineralogy and Petrology 155, 295–312. https://doi.org/10.1007/s00410-007-0243-3.
13. Kaygusuz A., Arslan M., Sipahi F., Temizel I., 2016. U–Pb Zircon Chronology and Petrogenesis of Carboniferous Plutons in the Northern Part of the Eastern Pontides, NE Turkey: Constraints for Paleozoic Magmatism and Geodynamic Evolution. Gondwana Research 39, 327–346. https://doi.org/10.1016/j.gr.2016.01.011.
14. Kirkland C.L., Smithies R.H., Taylor R.J.M., Evans N., McDonald B., 2015. Zircon Th/U Ratios in Magmatic Environs. Lithos 212–215, 397–414. https://doi.org/10.1016/j.lithos.2014.11.021.
15. Kuznetsov N.B., Belousova E.A., Griffin W.L., O’Reilly S.Y., Romanyuk T.V., Rud’ko S.V., 2019. Pre-Mesozoic Crimea as a Continuation of the Dobrogea Platform: Insights from Detrital Zircons in Upper Jurassic Conglomerates, Mountainous Crimea. International Journal of Earth Sciences 108 (7), 2407–2428. https://doi.org/10.1007/s00531-019-01770-2.
16. Linnemann U., Ouzegane K., Drareni A., Hofmann M., Becker S., Gärtner A., Sagawe A., 2011. Sands of West Gondwana: An Archive of Secular Magmatism and Plate Interactions – a Case Study from the Cambro-Ordovician Section of the Tassili Ouan Ahaggar (Algerian Sahara) Using U–Pb-LA-ICP-MS Detrital Zircon Ages. Lithos 123 (1–4), 188–203. https://doi.org/10.1016/j.lithos.2011.01.010.
17. Ludwig K.R., 2012. User’s Manual for Isoplot 3.75. A Geochronological Toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication 5, 75 p.
18. Mayringer F., Treloar P.J., Gerdes A., Finger F., Shengella D., 2011. New Age Data from the Dzirula Massif, Georgia: Implications for the Evolution of the Caucasian Variscides. American Journal of Science 311 (5), 404–441. https://doi.org/10.2475/05.2011.02.
19. Meinhold G., Kostopoulos D., Frei D., Himmerkus F., Reischmann T., 2010. U–Pb LA-SF-ICP-MS Zircon Geochronology of the Serbo-Macedonian Massif, Greece: Palaeotectonic Constraints for Gondwana-Derived Terranes in the Eastern Mediterranean. International Journal of Earth Sciences 99 (4), 813–832. https://doi.org/10.1007/s00531-009-0425-5.
20. Mileev V.S., Baraboshkin E.Yu., Rozanov S.B., Rogov M.A., 2006. Cimmerian and Alpine Tectonics of Mountainous Crimea. Bulletin of MOIP. Geology Dept. 81 (3), 22–33 (in Russian)
21. Mileev B.C., Baraboshkin E.Yu., Rozanov S.B., Rogov M.A., 2009. Tectonics and Geodynamic Evolution of the Mountainous Crimea. Bulletin of MOIP. Geology Dept. 84 (3), 3–22 (in Russian)
22. Morozova E.B., Sergeev S.A., Savelev A.D., 2017. Cretaceous and Jurassic Intrusions in Crimean Mountains: The First Data of U–Pb (SIMS SHRIMP) Dating. Doklady Earth Sciences 474 (1), 530–534 (in Russian). http://dx.doi.org/10.1134/S1028334X17050075.
23. Nance D.R, Linnemann U., 2008. The Rheic Ocean: Origin, Evolution, and Significance. GSA Today 18 (12), 4–12. https://doi.org/10.1130/GSATG24A.1.
24. Nikishin A.M., Gabdullin R.R., Makhatadze G.V., Khudolei A.K., Rubtsova E.V., 2016. Bitak Conglomerates as a Clue for Understanding the Middle Jurassic Geological History of Crimea. Moscow University Bulletin. Series 4. Geology 6, 20–27 (in Russian) https://doi.org/10.33623/0579-9406-2016-6-20-27.
25. Nikishin A.M., Okay A., Tuysuz O., Demirer A., Wannier M., Amelin N., Petrov E., 2015a. The Black Sea Basins Structure and History: New Model Based on New Deep Penetration Regional Seismic Data. Part 2: Tectonic History and Paleogeography. Marine and Petroleum Geology 59, 656–670. https://doi.org/10.1016/j.marpetgeo.2014.08.018.
26. Nikishin A.M., Romanyuk T.V., Moskovsky D.V., Kuznetsov N.B., Kolesnikova A.A., Dubensky A.S., Sheshukov V.S., Lyapunov S.M., 2020. Upper Triassic Strata of Mountainous Crimea: The First Results of U-Pb Dating of Detrital Zircons. MSU Bulletin. Series 4. Geology 2, 18–33 (in Russian)
27. Nikishin A.M., Wannier M., Alekseev A.S., Almendinger O.A., Fokin P.A., Gabdullin R.R., Khudoley A.K., Kopaevich L.F., Mityukov A.V., Petrov E.I., Rubsova E.V., 2015b. Mesozoic to Recent Geological History of Southern Crimea and the Eastern Black Sea Region. In: M. Sosson, R.A. Stephenson, S.A. Adamia (Eds), Tectonic Evolution of the Eastern Black Sea and Caucasus. Geological Society of London Special Publications 428 (1), 241–264. https://doi.org/10.1144/SP428.1.
28. Okay A.I., Nikishin A.M., 2015. Tectonic Evolution of the Southern Margin of Laurasia in the Black Sea Region. International Geology Review 57 (5–8), 1051–1076. https://doi.org/10.1080/00206814.2015.1010609.
29. Okay A., Topuz G., 2016. Variscan Orogeny in the Black Sea Region. International Journal of Earth Sciences 106, 569–592. https://doi.org/10.1007/s00531-016-1395-z.
30. Okay A.I., Altiner D., Sunal G., Aygul M., Akdogan R., Altiner S., Simmons M., 2018. Geological Evolution of the Central Pontides. In: M.D. Simmons, G.C. Tari, A.I. Okay (Eds), Petroleum Geology of the Black Sea. Geological Society, London, Special Publications 464 (1), 33–67. https://doi.org/10.1144/SP464.3.
31. Peytcheva I., Tacheva E., von Quadt A., Nedialkov R., 2018. U-Pb Zircon and Titanite Ages and Sr-Nd-Hf Isotope Constraints on the Timing and Evolution of the Petrohan-Mezdreya Pluton (Western Balkan Mts, Bulgaria). Geologica Balcanica 47 (2), 25–46.
32. Popov D.V., Brovchenk V.D., Nekrylov N.A., Plechov P.Yu., Spikings R.A., Tyutyunnik O.A., Krigman L.V., Anosova M.O., Kostitsyn Y.A., Soloviev A.V., 2019. Removing a Mask of Alteration: Geochemistry and Age of the Karadag Volcanic Sequence in SE Crimea. Lithos 324–325, 371–384. https://doi.org/10.1016/j.lithos.2018.11.024.
33. Promyslova M.Y., Demina L.I., Bychkov A.Y., Gushchin A.I., Koronovsky N.V., Tsarev V.V., 2016. Ophiolitic Association of the Cape Fiolent Area, Southwestern Crimea. Geotectonics 50, 21–34. http://dx.doi.org/10.1134/S0016852116010040.
34. Rolland Y., Hässig M., Bosch D., Meijers M.J.M., Sosson M., Bruguier O., Adamia Sh., Sadradze N., 2016. A Review of the Plate Convergence History of the East Anatolia-Transcaucasus Region during the Variscan: Insights from the Georgian Basement and Its Connection to the Eastern Pontides. Journal of Geodynamics 96, 131–145. http://dx.doi.org/10.1016/j.jog.2016.03.003.
35. Romanyuk T.V., Kuznetsov N.B., Belousova E.A., Gorozhanin V.M., Gorozhanina E.N., 2018. Paleotectonic and Paleogeographic Conditions for the Accumulation of the Lower Riphean Ai Formation in the Bashkir Uplift (Southern Urals): The «TerraneChrone®» Detrital Zircon Study. Geodynamics & Tectonophysics 9 (1), 1–37 (in Russian) https://doi.org/10.5800/GT-2018-9-1-0335.
36. Rud’ko S.V., 2018. Upper Jurassic Rock Depositional Settings in the Baidar Valley and Evolution of the Crimean Carbonate Platform. Lithology and Mineral Resources 53, 307–323. http://dx.doi.org/10.1134/S0024490218040065.
37. Rud’ko S.V., Kuznetsov N.B., Belousova E.A., Romanyuk T.V., 2018. Structure and the Age of Conglomerates of Mount Southern Demerdzhi Based on the First U/Pb-Dating of Detrital Zircons (Upper Jurassic, Crimean Mountains). Doklady Earth Sciences 483, 1423–1426. http://dx.doi.org/10.1134/S1028334X18110223.
38. Rud’ko S.V., Kuznetsov N.B., Belousova E.A., Romanyuk T.V., 2019. Age, Hf-Isotope Systemantic of Detritial Zircons and the Source of Conglomerates of the Southern Demerdzhi Mountain, Mountaineous Crimea. Geotectonics 53, 569–587. https://doi.org/10.1134/S0016852119050042.
39. Rud’ko S.V., Pokrovsky B.G., Kuznetsov A.B., 2017. Sr Chemostratigraphy, δ13C, and δ18O of Rocks in the Crimean Carbonate Platform (Late Jurassic, Northern Peri-Tethys). Lithology and Mineral Resources 52, 479–497. http://dx.doi.org/10.1134/S0024490217060086.
40. Savu H., 2012. The North Dobrogea Granite Province: Petrology and Origin of Its Rocks. Bucharest, Romanian Journal of Geology 56 (1–2), 3–15.
41. Sayit K., Goncuoglu M.C., Furman T., 2010. Petrological Reconstruction of Triassic Seamounts. Oceanic Islands within the Palaeotethys: Geochemical Implications from the Karakaya Subduction/Accretion Complex, Northern Turkey. Lithos 119 (3–4), 501–511. http://dx.doi.org/10.1016/j.lithos.2010.08.004.
42. Soloviev A.V., Rogov M.A., 2010. First Fission-Track Dating of Zircons from Mesozoic Complexes of the Crimea. Stratigraphy and Geological Correlation 18, 298–306. https://doi.org/10.1134/S0869593810030068.
43. Spiridonov E.M., Fedorov T.O., Ryakhovsky V.M., 1990. Magmatic Formations of the Mountainous Crimea. Article 1. Bulletin of MOIP. Geology Deptartment 65 (4), 119–133 (in Russian)
44. Sunal G., Satir M., Natal’in B., Toraman E., 2008. Paleotectonic Position of the Strandja Massif and Surrounding Continental Blocks Based on Zircon Pb-Pb Age Studies. International Geology Review 50 (6), 519–545. http://dx.doi.org/10.2747/0020-6814.50.6.519.
45. Teipel U., Eichhorn R., Loth G., Rohrmuller J., Holl R., Kennedy A., 2004. U–Pb SHRIMP and Nd Isotopic Data from the Western Bohemian Massif (Bayerischer Wald, Germany): Implications for Upper Vendian and Lower Ordovician Magmatism. International Journal of Earth Sciences 93, 782–801. https://doi.org/10.1007/s00531-004-0419-2.
46. Tikhomirov P.L., Chalot-Prat F., Nazarevich B.P., 2004. Triassic Volcanism in the Eastern Fore-Caucasus: Evolution and Geodynamic Interpretation. Tectonophysics 381 (1–4), 119–142. http://dx.doi.org/10.1016/j.tecto.2003.10.014.
47. Ustaomer P.A., Ustaomer T., Robertson A.H.F., 2012. Ion Probe U–Pb Dating of the Central Sakarya Basement: A Peri-Gondwana Terrane Intruded by Late Lower Carboniferous Subduction/Collision Related Granitic Rocks. Turkish Journal of Earth Sciences 21, 905–932. http://dx.doi.org/10.3906/yer-1103-1.
48. Wanless V.D., Perfit M.R., Ridley W.I., Wallace P.J., Grimes C.B., Klein E.M., 2011. Volatile Abundances and Oxygen Isotopes in Basaltic to Dacitic Lavas on Mid-Ocean Ridges: The Role of Assimilation at Spreading Centers. Chemical Geology 287 (1–2), 54–65. https://doi.org/10.1016/j.chemgeo.2011.05.017.
Review
For citations:
Romanyuk T.V., Kuznetsov N.V., Rud’ko S.V., Kolesnikova A.A., Moskovsky D.V., Dubensky A.S., Sheshukov V.S., Lyapunov S.M. Stages of Carboniferous-Triassic magmatism in the Black Sea region based on isotope-geochronological study of detrital zircons from jurassic coarse clastic strata of the Mountainous Crimea. Geodynamics & Tectonophysics. 2020;11(3):453-473. (In Russ.) https://doi.org/10.5800/GT-2020-11-3-0486